®

—
—
—

MARVELL®

88F5182

Feroceon® Storage Networking SoC
User Manual

Marvell. Moving Forward Faster

Doc. No. MV-S103345-01, Rev. C
April 29, 2008, Preliminary

Document Classification: Proprietary Information

E 8gF5182
M ARVELL® UserManual

Document Conventions

|§ | | Note: Provides related information or information of special importance.

' Caution: Indicates potential damage to hardware or software, or loss of data.
o

Warning: Indicates a risk of personal injury.

Document Status

Doc Status: Preliminary Technical Publication: 0.x

For more information, visit our website at: www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,

3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.

Copyright © 1999— . Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon,
Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of
Marvell. Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of
Marvell. All other trademarks are the property of their respective owners.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 2 Document Classification: Proprietary Information April 29, 2008, Preliminary

http://www.marvell.com
http://www.marvell.com

[e

M ARVELL®

Moving Forward Faster

= 88F5182 Feroceon® Storage Networking SoC

User Manual

PRODUCT OVERVIEW

The Marvell® 88F5182 device is a high-performance,
highly integrated, Storage Networking System Engine.
The 88F5182 integrates the Marvell Feroceon® CPU
core, compliant with the ARMV5TE architecture.

FEATURES

The 88F5182 device has the following features:
m High-performance integrated controller
* High-performance Feroceon CPU core with
integrated 32/32 KB I/D L1 cache, running at up to
500 MHz
* High bandwidth dual-port memory controller
(16-/32-bit DDR1/DDR2 SDRAM)
* Single PCI Express (x1) port with integrated PHY
* Single 32-bit PCI2.2 66 MHz port
* Two SATA 2.0 ports with integrated 3 Gbps SATA Il
PHYs
* Single Gigabit Ethernet MAC (10/100/1000 Mbps)
* Two USB 2.0 ports with integrated PHY
* Security Cryptographic Engine
* Two-Wire Serial Interface (TWSI)
* Two UART ports
* 16-bit device bus with up to four chip selects
* NAND Flash support
* Integrated DMA engine (four channels)
* XOR engine for RAID applications
* 26 multi-purpose pins
* Interrupt controller
e Timers
= Marvell® Feroceon® CPU core
* 500 MHz with DDR1/DDR?2 at 166 MHz
* 400 MHz with DDR2 at 200 MHz
* 32-bit and 16-bit RISC architecture
e Compliant with V5TE architecture as published in
the ARM Architect Reference Manual, Second
Edition
* Includes MMU to support virtual memory features
* MPU can be used instead when not using MMU
* 32-KB I-Cache and 32-KB D-Cache

Copyright © 2008 Marvell

64-bit internal data bus

Out-of-order execution for increased performance
In-order retire via a Reordering Buffer (ROB)
Branch Prediction Unit

Supports JTAG/ARM Multi-ICE

Supports both Big and Little Endian modes

DDR1/DDR2 SDRAM controller

DDR SDRAM with a clock ratio of 1:1, 1:2, 1:3, or
1:4 between the DDR SDRAM and the Feroceon
CPU core, respectively

16-/32-bit interface

DDR1 at up to 333 MHz

DDR2 at up to 400 MHz

Supports up to two dual-sided DIMMs

Supports DDR components of x8 and x16

Dual channel memory controller

Reduced CPU to DDR SDRAM latency

SSTL 2.5V I/Os in DDR1, 1.8V |/Os in DDR2
Supports four DDR SDRAM banks (CSs)

DDR1 supports device densities of 128, 256,

512 Mbits

DDR2 supports device densities of 256, 512 Mbits
Up to 1 GB (32-bit interface) and 0.5 GB (16-bit
interface) total memory space

Supports DDR SDRAM bank interleaving between
all DDR SDRAM banks (both the physical banks,
and the four internal banks of the DDR SDRAM
devices)

Supports up to 16 open pages (page per bank)
Supports configurable DDR SDRAM timing
parameters

Supports up to 32-byte burst per single DDR
SDRAM access

Single ended DQS in DDR2

DDR1/DDR2 pad auto calibration

Support DDR2 On Die Termination (ODT)

PCI Express interface (x1)

PCI Express Base 1.0a compatible

Integrated low power SERDES PHY, based on
proven Marvell SERDES technology

Root Complex port

Can be configured also as an Endpoint port

Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 3

®
I;% 88F5182

M ARVELL® UserManual

e x1 link width

* 2.5 GHz/s signalling

* Lane polarity reversal support

* Maximum payload size of 128 bytes

¢ Single Virtual Channel (VC-0)

* Replay buffer support

» Extended PCI Express configuration space
» Advanced Error Reporting (AER) support

* Power management: LOs and software L1 support
* Interrupt emulation message support

* Error message support

m PCI Express master specific features
* Single outstanding read transaction
* Maximum read request of up to 128 bytes
* Maximum write request of up to 128 bytes
* Up to four outstanding read transactions in
Endpoint mode
m PCI Express target specific features
* Supports up to eight read request transactions
* Maximum read request size of 4 KB
* Maximum write request of 128 bytes
* Supports PCI Express access to all of the device’s
internal registers
m 32-bit PClinterface
* 66 MHz PCI 2.2 compliant interface
* 3.3V 1/Os, 5V tolerant
* Supports 64-bit addressing via DAC transactions
* Configurable PCI arbiter for up to six masters

m PCl master specific features
* Supports all PCI cycles
* Host to PCI bridge—translates CPU cycles to PCI
memory, I/O, or configuration cycles
* Supports DMA bursts between PCIl and memory
* Supports transaction combining to unlimited PCI
burst
m PCl target specific features
* Supports all PCI cycles
* Supports programmable aggressive read prefetch
* Supports unlimited burst write with zero wait states
* Supports up to four delayed reads
* Supports PCI access to all of the device’s internal
registers
* PCI address remapping to local memory

m PICMG Compact PCI Hot-Swap ready
m PCIl“Plug and Play” support
* Plug and Play compatible configuration registers
* PCI configuration registers that are accessible from
both the Feroceon CPU core and PCI
Vital Product Data (VPD) support
* PCI Power Management (PMG) support
* Message Signal Interrupts (MSI) support

Doc. No. MV-S103345-01 Rev. C

Page 4 Document Classification: Proprietary Information

SATA ll interface (2 ports)
* Integrates Marvell 3 Gbps (Gen2i) SATA PHY
* Compliant with SATA |l Phase 1 specifications
- Supports SATA Il Native Command Queuing
(NCQ), up to 128 outstanding commands per
port
- First party DMA (FPDMA) full support
- Backwards compatible with SATA | devices
* Supports SATA Il Phase 2 advanced features
- 3 Gbps (Gen2i) SATA Il speed
- Port Multiplier (PM)—Performs FIS-Based
Switching as defined in SATA working group PM
definition
- Port Selector (PS)—Issues the protocol-based
OOB sequence to select the active host port
* Supports device 48-bit addressing
* Supports ATA Tag Command Queuing

SATA Il host controller
¢ Enhanced-DMA [EDMA] per SATA port
- Automatic command execution without host
intervention
- Command queuing support, for up to 128
outstanding commands
- Separate SATA request/response queues
- 64-bit addressing support for descriptors and
data buffers in system memory
¢ Read ahead
¢ Advanced interrupt coalescing
¢ Target mode operation—Two 88F5182 devices can
be attached through SATA ports, enabling data
communication between different 88F5182
devices.
* Advanced drive diagnostics via the ATA SMART
command

Integrated single GbE (10/100/1000) MAC

* Supports 10/100/1000 Mbps

¢ MiIl, GMII, or RGMII Interface

* Proprietary 200 Mbps Marvell MIl (MMII) interface

* Dedicated DMA for data movement between
memory and port

* Priority queuing on receive based on DA, VLAN
Tag, and IP TOS

* Layer 2/3/4 frame encapsulation detection

* TCP/IP checksum on receive and transmit

* DA address filtering

USB 2.0 ports (2 ports)

* Each port can serve as a peripheral or host

* USB 2.0 compliant

¢ Integrated USB 2.0 PHY

* EHCI compatible as a host

* As a host, supports direct connection to all
peripheral types (LS, FS, HS)

Copyright © 2008 Marvell
April 29, 2008, Preliminary

* As a peripheral, connects to all host types (HS, FS)
and hubs

* Up to 4 independent endpoints supporting control,
interrupt, bulk, and isochronous data transfers

* Dedicated DMA for data movement between
memory and port

Two-Wire Serial Interface (TWSI)

* Master/slave operation

* Serial ROM initialization

Two UART interfaces

¢ 16550 UART compatible

* Two pins for transmit and receive operations
* Two pins for modem control functions

Device bus controller

* 8-/16-bit width

* 166 MHz clock frequency

* 3.3VI/Os

* Supports many types of standard memory devices
such as FLASH and ROM

* Four chip selects with programmable timing

* Optional external wait-state support

* Boot ROM support

NAND Flash support

* Glueless interface to CE don’t care NAND Flash
through the device bus interface

* Glueless interface to CE care NAND Flash through
the device bus and MPP interfaces

* Boot from NAND Flash when the first block, placed
on 00h block address, is guaranteed to be a valid
block with no errors

* Supports read bursts of up to 128 bytes

Four channel Independent DMA controller

* Chaining via linked-lists of descriptors

* Moves data from any interface to any other
interface

e Supports increment or hold on both source and
destination address

Two XOR DMAs

* Useful for RAID application

Copyright © 2008 Marvell
April 29, 2008, Preliminary

* Supports XOR operation on up to eight source
blocks

e Supports CRC-32 calculation

Cryptographic engine

¢ Hardware implementation on encryption and
Authentication engines to boost packet processing
speed

* Dedicated DMA to feed the hardware engines with
data from internal SRAM memory

* Implements AES, DES and 3DES encryption
algorithms

* Implements SHA1 and MD5 authentication
algorithms

26 multi-purpose pins dedicated for peripheral

functions and general purpose I/O

* Each pin can be configured independently

* GPIO inputs can be used to register interrupts from
external devices and to generate maskable
interrupts

Interrupt controller

* Maskable interrupts to Feroceon CPU core

* In endpoint mode, maskable interrupts to the
PCI/PCI Express interfaces

Timers

* Two general purpose 32-bit timer/counters

* One 32-bit Watchdog timer

Internal Architecture

* AHB bus for high-performance, low latency
Feroceon CPU core to DDR SDRAM connectivity

* Advanced Mbus architecture with any to any
concurrent I/O connectivity

* Dual port DDR SDRAM controller connectivity to
both AHB and Mbus

Bootable from

* Device interface

* PClinterface

* DDR interface

HSBGA, 23x23 mm, 388L package, 1 mm ball

pitch

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information Page 5

®
I;% 88F5182

M ARVELL® UserManual

Table of Contents

PIOGUCT OVEBIVIBWeeiiiiiee ettt ettt ettt e et e e e e e e oo e a bbb be e et e et e e e e e e e s e e aannbbbbesbeeee e s e nnnnbnbbeeeaeaaeas 3
LT LA D] =T SO PP UPPUUPPPTTRPRN 3
L (] =T T PRSP P PP 15
P2Y o Jo 18 I I3 o oW =T o | PRSP SRP PR 15
[RYC]F= U=To B D o Tod U 1= o] £ TSP PP UPRTRRR 15
DOCUMENT CONVENTIONS ...ttt ettt ettt ettt ettt e bt e e bb e e e s sttt e s sk e e e e bb e e e asb e e e ebb e e e enbeab e e e e nbbeeenneeennnees 16
1 OV BIVIBW ..ttt ettt et e oo oot b ettt et a4 e e e o4 e 4o R b a b b et e ettt e e e e e e e e e e e e n bbbt beeeeeeaaeeeeeaabbnaeaaaaaaaaens 17
2 F o [0 L= TR =T o PP EURT PP 20
21 Feroceon® CPU Core Address 1= T o L PO PRT TR 20
2.2 PClEXPIrESS AGAIESS MEP ..ceeuiiiiiiiie ittt ettt ettt h e s bt e s b et e et e e e bt e e sk bt e e e st san e e snb e e e anbn e e nnnnes 20
2.3 [O AN (o [T 1Y =T o PP PPPTURUPSR 20
2.4 Y AN N N [0 [T Y - T RSP P PPN
25 Gigabit Ethernet Address Map
2.6 (0] =0 o =TS 1Y =T o RSP PPU PRSP
2.7 (0 1S] = 3 A o [£ Y =T o RSP UPURTURTRSR 21
2.8 1Y NN [0 | L =TT - o I PRSPPI 21
29 DO o [0 (=11 =T o SRR 21
2.10 (D= F= LU Ao o =T 1V = o PSP PPUOPTPSRN 22
3 FEIOCEON® CPU COT.....eeeeeeeeeeeee ettt sttt en e en s 23
4 DDR SDRAM CoNtroller INTEITACE ...oooiiiiieeiei i e e e e e e e 24
41 FUNCLONAI DESCIIPIION........teiiiei ittt ettt e ettt e e e e a bttt a e e e kb bt e e e e e aabbbe e e e e e nbe e e aanbbseeeeeasnnbeeeaeeannnes 24
4.2 DDR SDRAM AGUIESSING. ..c..tttetutteeeittee ettt sie ettt ettt e s st e e s bt e essbe e e sb et e s bb e e e asbe e e asbe e e s beeeaabb e e e beeeeabbeeennteeennnes 26
4.3 DDR SDRAM TiMING PAIAMELELSeiiiiiiiiieiie e aitiete ettt e e e e aatb et e e e e aaabeeeaeeaabbeeeaesasbeeeaeaaasnseeeeessanbseeeaesanses 28
4.4 DDR SDRAM BUISE ...ttt ittt ettt ettt ettt sttt e he e e ettt e e sttt e a2 b e e e eabe e e e b bt e e kb e e e abb e e e eabe e e enb b e e enne e e nnnee
4.5 DDR SDRAM Open Pages
4.6 DDR SDRAM REFIES ...ttt ettt e st e st e e bbb et et e et nnes
4.7 DDR SDRAM INItIAIZATION ... ettt ettt e e ettt e e e e sttt e e e e mtee e e e e e ansneeeeeeeannseeeaeesansseeaaeaansns 32
4.8 DDR SDRAM OPEration REGISIETuviiiiiiiiieiie ettt ettt e e e st e e e s st aeaa e s s tataeaeeasstaeeaesssatbeeeaesases 33
4.9 DDR SDRAM Self REfFESH IMOE ..ottt ettt e e et e e e e e nee e e e e e anbneeaeeannes 34
4.10 DDR SDRAM AdAreSS/DAta DIIVEccoiuiiiiiiieiiiie ettt ettt e st s bt e e bbe e e sbb e e e nnae e e sabeeesnneeesanees 35
411 DDR SDRAM Read DAt SAMIPIEeeiiiieeiiiiiie ettt et e e e e ettt e e e e ettt e e e s e anntaeeeeeansbeeeaesanbeneaaeanns 35
412 DDR2 On Die Termination (ODT) ...iiiuiieiieiiiiiiteeeeeitiet e e e e e sttae e e e e st e e e e asataaeeaeesstaseeaeesasssbeeeeasssbeeeessnssneseessanses 36
4.13 DDR SDRAM INterface 1/O BUFFEISciiiiiiieiie ettt e et e e e s et e e e e e nabaeeeeeeanees 37
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 6

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table of Contents

5 PCI EXPIESS INTEITACE. ... i it e e s e e e e e e e aaaaaaeaaaaeees 38
5.1 Functional Description
5.2 Master MEMOIY TIaNSACHIONSciiiiiiiiiie ettt ee ettt e e s e ehb bt e e e e e e beb e e e e e e s sbeeeee e s nbaeeeaesansbeeeeeeaannbeeeeeeanres 40
53 MASEEN /O TrANSACHONSeeiueiirie ittt et ettt e sae e bt s b e s ee e e beesan e e nbeesneenre e e 40
5.4 Master Configuration TrANSACHONSciiiiiiiiiieiie ettt e et e e eere e e anne e e ann e e annes 41
5.5 Target MEmMOTY TIANSACHONSccoteeririiiteiiei ettt ettt e st bt st e b sb e et e st e e e bt e abe e e st e be e st e nbeese bt e nbeennne e nns 42
5.6 TArget 1/0 TrANSACHONSoieieieiiiie ittt e st a e e e bt e e eh e e e s st e e et et e et e s be e e enbe e e nnneeenneee s 42
5.7 Target Configuration TrANSACHONSciuiieiiiee et rtee et et e et e e e bt e e sate e e sttt e e anteeesbeeesseeenteeesnneaesnneeean 42
5.8 [LTSIt T T PRSP P PP PP PPPPRST 42
5.9 [Tl (=0 B I = 1 E57= Tod 1 o] L P PO PP PPPRTPPUPRRN 44
5.10 F g o]l Lo e I=TaTo M@ o =] oo o T O PP PP PPPPPPPPPPI
5.11 PCI Express Register Access
5.12 [(0] B YT = TP PPPPPP PP PPPPPPPP
5.13 =g (o] g = F= T [0 110 Vo U OO PUPPRTPRPPPRRN 45
6 O I T 1 =T =T = S EEEPRRP 48
6.1 FUNCHONAI DESCIIPIIONteteiiie ettt et s e et e e st e e ea e e e ss et e s nne e e nnn e e e anne e e nanes 48
6.2 O Y o L= @] o 1] = 110 o TSR RP PP ROTPR 48
6.3 PCIBUS AIDITIALIONcieiiiiiiie ettt e e e e sttt e e e e s bttt e e e s taee e e e e s sbeeeeeeteeee s e snteeeaeesansaeeeeesanses 51
6.4 PCl Master ConfiQUIation CYCIESuuiiiiieiiie it eteee ettt s ettt e st e e st e e st e e e teeesateee e saeeeesnbeeennteeennneas 52
6.5 PCl Target AAAreSS DECOUINGc.vvieiriieitiie ittt ettt ettt e e as b e e s et e st e s abe e e s sne e e e abb e e e anneeenanees 54
6.6 O I oot TSI o (0] (=T o] o RS
6.7 PCI Target Operation
6.8 64-bit Addressing
6.9 PCI Parity and Error Support
6.10 [OF] 01T (U] =11 0] IS o F= ol =T PP PP TSP P PP UPPPPSRN 60
6.11 PCI Add-In Card (Endpoint) SPeCial FEAUIESccoiiiiiiiiie ittt 62
6.12 [O @4 (o o] (] o EO T PP OO PPPPPPPPPRTN 68
7 Y AN N TN [0 (=T = Lo = PP 69
8 Serial-ATA 11 Host Controller (SATAHC)uiii et 70
8.1 SATAHC BIOCK DIBGIAM ..ttt ettt sttt e st e skt e s bt e ek e e e as s e e e st e e e s ne e e et e e snneeesnneeannreeenns 70
8.2 Host Direct Control Over the Hard DiSK DFVEcuoiiiiiiiiiiiii et 71
8.3 [g Vo [o= 4o £ SR PPPPTPPPSSR 71
8.4 L] YN @ =T - i o o I USSP
8.5 BIST .,
8.6 Vendor Unique
8.7 Protocol Based Port Select

Gigabit Ethernet Controller INTErface ... 95
9.1 FUNCHONAI DESCIIPIION ...ttt ettt ettt e e et e s bt e e et e e e e abbe e e eate e e ss b e e be e e s beeeesbbeeennbeeennnees 95
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 7

—

= 88F5182

M ARVELL® UserManual

9.2 Port Features

9.3 Gigabit Ethernet Unit EXternal INtErfaCe.........ccuuiiiiiiiiiiie e 97
9.4 [1Y AN T ol 1] o F= 111 YU PPPTUPPUPSRN 97
9.5 RECEIVE Frame PrOCESSINGcciiiviiiie ittt ettt e ettt e e et e e e e et e e e e es st e e e e e aataeeeeesstbeeeetseeeeesnntaaeaeesanses 114
9.6 o (gL g T A (=] £ 10T o €SOO EEP USRI 116
9.7 Network Interface (10/100/1000 MBPS)uviiiiiiiiiieeeiiiiitte e e sttt e e e eae e e s s ea e e e stataeaesesntaeeeesastaesasbaeaaesannes 117
9.8 P (o RN =To o] (=N 1o AV ToTe Lo PP PPRPPNE 121
9.9 DAta BIINUET ...ttt E et b et nres 122
9.10 [T oo ol =) A T o RSO SRP 122
9.11 lllegal Frames .122
9.12 Backpressure Mode 122
9.13 FIOW CONIOL ...t ettt h ettt b e e bt s bttt er e e b e e st bt e nbeeseb e e s beeeneenrees 123
9.14 MII/GMII Serial Management INtErface (SIMI)......ooi ittt et e e e e seaee e e e enees 124
9.15 Link Detection and Link Detection Bypass (FOrCELINKPASS)............ccoiiiuiiiieiiiiiiiee et 126
9.16 Network Management INtErface COUNTEIS.oiiiiiiiie ettt e e naee 127
9.17 POI MIB COUNTEIS ...ttt ettt sttt st et s e e e s b e e e st b e e s b b e e e st e sk b e e s ssn e e e sana e e s sanenenas 127
10 (U 1S] = R O [Y (=] o = Lo = U TP T TR PPRPT 132
10.1 FUNCHONAI DESCIIPIION......eteeii ettt ettt e e e e a bt e e e e et b et e e e s esbee e e e e s asae e e e nnbeeeeeesanbeeeeesanees 132
11 Cryptographic Engines and Security ACCElerator........cccccoiiuiiiiiiiiiiiiiie e 133
111 Cryptographic ENGINES OPEIALIONoiiuiiiiiiieeiiit ettt st sb et et e e s nee e e nnree s 135
11.2 Security ACCEIETAtOr OPEIALIONeiiiiiiiiiiee ettt ee et e e et e e e e et et e e e e s tbe e e e e s et bbeeeeeaanseesanbbeeeeeantbeeeaean 149
12 Two-Wire Serial INterface (TWSI) ..o e 159
12.1 FUNCHONAI DESCIIPIION ...ttt ettt ettt et e et e s e et e et et e ettt e e bt et b e e e anbeeesaneeesnbeeenane 159
12.2 TWSI Master Operation ..162
12.3 BT S S Eo VT @] o 1T -1 1 o] o TSR 163
13 (07 o I 1] €= = T T TR 165
131 FUNCHONAI DESCIIPIION.......eieii ettt ettt e e e e a b et e e e e e bb et e e e e e sbee e e e e sasbeeeaanbbneaeeeaanbeeeeesannes 165
13.2 UART INterface Pin ASSIGNIMENTciiuiiiiiii ittt ettt ettt e sab e e st e e ste e e s nie e e e et b e e e sateeesaneeesnbeeenane 165
14 Device Controller INterfaCe e e 166
14.1 FUNCHONAI DESCIIPIION.......eieii ettt ettt e e e e a b et e e e e e bb et e e e e e sbee e e e e sasbeeeaanbbneaeeeaanbeeeeesannes 166
14.2 Device INterface PiN ASSIGNMENTeiiiiiiiii et s e e e st e e nbbe e e sebreesnbeeenaes 166
14.3 Device INterface BIOCK DIAGIAMciiuuiiii ittt ettt e ettt e e e e e aate e e e e e aanbbeee e e e aatbeeeeeaanbeeeaesannns 167
14.4 W (o (XIS 0] 1] o1 [=3 o [P PPR 169
145 Device Interface Read TimMING PAramMELErScoi ittt e et ee ettt e e e e e et e e e e s sneeeeaaeanneeeaeeannes 169
14.6 Device Interface Write TimiNg Parameters.........cocuiiiiiiiiiiiiiie ettt e e s e e st e e e e s st e e e e s sstaeeaeesanees 170
14.7 Data Pack/Unpack and Burst Support 171
14.8 RSy N B A IS TUT o] o o] ¢ A PSPPI 172
14.9 Additional Device INterface SIGNAINGco it e e et e e e e e ebbe e e e e e anaeeeaeeaanes 174
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 8 Document Classification: Proprietary Information April 29, 2008, Preliminary

Table of Contents

14.10 NAND Flash Support

14.11 NAND Flash Controller IMpIemMENTALIONcoouiiiiiiieiii ittt eesbe e e e 177
14.12 BOOt from NAND FIASH ... ettt e ekttt e e e e abe et e e e e anbbee s e abbe e e e e e antaeeeaeeannes 177
15 11 AN @) 0] 1 =T USSR 179
151 FUNCHONAI DESCIIPIION ...ttt ettt ettt et bt et e s e et e et e e ettt e e be et bt e e anteeesabeeeanbeeenans 179
15.2 1Y N B =2 ox ¢ o] (o] (= PR UOTT PP 179
15.3 101 VAN [0 [=TT B 1= ToTo Lo 1o o [SRRSO SPP 180
154 1Y N @ =Yg a1 I O o] o] i o) PRSP SRP 181
15.5 1Y N 1 (=T (] 0 £ PP PPPPPTPTPTRS 185
16 DA =l [1 [PPSR PP 186
16.1 Rl] YA e @] o 1T =Y i o] o NPT PEPT 186
16.2 D Yol g o] (o] g @1 o -1/ o O PO PP PP OUPPUPPPPPRI 191
16.3 Address Decoding ..195
16.4 FAN g o111 =\ o] o T T T TP P OO PP PR UPPTPURPPRTRN 196
16.5 XOR ENQINE PrOGIamMMUNG.........coieiiiuieieiaeiiiiiieee s aateeeaeaaateeeaa e s asteeeaaaaastaeeaaeaaassaeeaeaaaansseeaeaaaeeesaanssneeeesasneees 197
16.6 BUISE LIMIE ..ttt h et b e s bt e e e e s b et e bt e e b e e e e be e et e e e 201
16.7 [0 To [T T 1= 2] OO OUPPRPN 202
16.8 L (o] E3= Talo I 101 1= T4 U] o] £SO PRPSORPSPN 202
17 General PUrpoSse /O POrt INTEITACEuuuiiiiiiiiieeee e 204
18 INTEITUPT CONTIOIIEI ..ttt e e e e e e e e eee e e e e e s aennnes 205
18.1 FUNCHONAI DESCIIPIION......eteeii ettt ettt e e e e a bt e e e e et b et e e e s esbee e e e e s asae e e e nnbeeeeeesanbeeeeesanees 205
18.2 Local Interrupt Cause and Mask REGISIEIScciuiiiiiiie ettt e e 205
18.3 Main Interrupt Cause and MaSK REQISTEIScuii ittt et e e et e e e e e eatb e e e e e snbaeeaesanees 205
18.4 (Do oT4 o 1=]| I Lo 10=T4 (U] o SRR PP PEPOTPSPRN
185 88F5182 Interrupt Controller Scheme

19 BT PP UT PR 208
19.1 FUNCHONAI DESCIIPIION ...ttt ettt ettt ettt e s et e et e e sttt e e bt et bt e e anbeeesabeeeanbeeenane 208
19.2 By o1 VT [T T 1T TP PRPTTR 208
19.3 LAV = 1o o oo TR I T2 =Y RO PRRR 208
20 INtErNAl ATCRITECTUIE .o ettt e et e e e e e e e e e e e teeeeeeeeesaannnnes 209
20.1 AHB—FEroce0onN® CPU COrE LOCAI BUS..........o.ivveeeeeeeeeeeeeeeeeeeeeeeee e eeee et 209
20.2 MBUS—INEEINEAI BUS ...ttt ettt ekt e e sttt e st et e s be e e ek bt e e st e e na e ekt e e e satn e e e nbeeensbeeean 209
20.3 F N 1= (o Y o TS =TT [T PP PEPT 211
20.4 R Y= ol [T o @ (o [T ' o PRSPPSO 211
21 SYSEEM CONSIAEIALIONSeeiiiiie ittt e et e e e bbbt e e s bt e e e e s anneee s 212
211] 0 To [T T o] 1= 2] PP ERPUPPPRPN 212
21.2 BOOT SEOUENCE ...ttt ettt e e e ettt e ook et e e 4ok e et e e e e ek b ettt e e e e an e e e e e e e e et e e e e e e e e e nen 212
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 9

®
I;% 88F5182

M ARVELL® UserManual

21.3 POWET IMBINAGEIMEINT ...ttt ettt et ettt et e e eeeeaaeaaa s e s b a bbbt s es e s e e e e e e e san bbb bn e b e seneeeeeneeeeeeas
21.4 = g (o gl FoTa To [T oo O TSP PP PUPPUPPPPTR

A BBF5182 REGISIEI S ...eeeeiiiiiiii ittt ettt e e e e e e e e s s bbbt e e e e e e e e e e e e e s bbbt b eeaeaeeeas
Al R CTo 1S3 (T gl B2 od ¢] (o] (PP PP UUUPRRPTN
A.2 R LETo Y (= G Y] o< T T PP PP RS PUPPUUPPPUPRIN

B REVISTION HISTOTY ..ttt ettt e e e e e e e et e e e e e e e e e e e s e e nnnnbbeaaaae e s

Doc. No. MV-S103345-01 Rev. C
Page 10

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

List of Tables

List of Tables

Table 1: 88F5182 Default AAAreSS MaAPocii ittt e ettt e e e e et e e e e e b e e e beeeeaeaanns 22
Table 2: DDR SDRAM AGUIESSINGteeeeeaitttieeeeaitieee e e ettt e e e aabaeeee e s asaeeeaaeasbeeeaeeaaasbbeeeaasaabbeeaaesaanbeeeeessanneees 27
Table 3: Address Multiplex for 32-bit DDR SDRAM INEIACEccoceieiiiieiiie e 27
Table 4: Address Multiplex for 16-bit DDR SDRAM INtEIfACEcccuiiiiiiiiiiiiiiiiieeeie e 28
Table 5: DDR SDRAM TimiNg PArameLersccuueeiiiiiiiiiiieiiie ettt riiee sttt bee et s snae et e e see e e nneeas

Table 6: Read Data Sampling Window COonfiguIationccceoiiioiiiin et
Table 7: SUPPOIEA MESSAGE GIOUPS. ...eeeeeeeeiuuiteieeeaittteeeeaattteeaaeaaaseeeeaeaaabtseaeasaaabbeeeeeaansbeeeaesannneseeeeaanrneeeasaan
Table 8: Supported Message Groups: Endpoint Mode

Table 9: PRYSICAl LAYET EFTOT LIST.....teeiiiiii ettt e e e
Table 10: Data LinK LAYEr EXTOT LIST.......ooiuiiiiiiieeiii ettt ettt nbe e abb e s e es
Table 11: Transaction Layer Error LiStccocceeiiieeiiieennne

Table 12: Device Number to IDSEL Mapping

Table 13: EDMA CRQB Data StrUCIUIE IMBP.......ueiieiiiiiie ettt ettt e ettt e et ea e e e sabbe e e e s e aabbe e e e e s anneeeeesnene
Table 14: CRQB DWO—cPRD Descriptor Table Base LOW AQUIESS.......cccvieiirieiiieeeniiee e 86
Table 15: CRQB DW1—cPRD Descriptor Table Base High AdAreSsScvoovviiriieeiiiieise e 87
Table 16: CRQB DW2—CONtrOl FIAGSooiutiieititeiiii ettt ettt e e e 87
Table 17: CRQB DW3—Data Region BYtE COUNL.........ccciuiiiiiiie ittt itee ettt e et neneas 88
Table 18: CRQB DWA—ATA COMMANGceiiiiiiiiieeiiiiiite e e ittt e e e s etbe e e e e s staeeeaesstbssaaesaasasseaesasbaseaessaseeessasses 88
Table 19: CRQB DW5—ATA COMMEANGuuuiiiiiiieiiiiereeieeeeeesesssssssainrererareerreeaeaeaeasaasaaasasassnsnrsrsresereessenaannnnns 88
Table 20: CRQB DWB—ATA COMIMANGcciiiiiuiiiiieaiiiiieee ettt e e s stbeeeeeasiteteeesatneeeaesastaeeeaesaassaeeaessasneeessnsne 89
Table 21: CRQB DW7—ATA COMIMANGceiiiiiuiiiiieaiiiiieee e ettt e e s aiteeeasassbetaeesstseeeaesaasaeeeaessasseeeaessasneeessnsnes 89

Table 22: ePRD DWORD 0
Table 23: ePRD DWORD 1
Table 24: ePRD DWORD 2
Table 25: ePRD DWORD 3
Table 26: EDMA CRPB Data Structure Map

Table 27: CRPB ID REGISIEeeiiiiie ittt et e et e e e s n e e as e e e san e e enn e e e asne e e nnnneesnneas
Table 28: CRPB ReSPONSE Flags REQISIENuuiiiiiiiiiiiii ettt s ettt e e e s s e e e e s tb e e e e s e baae e e e ssaaaeaeaanns
Table 29: CRPB TimMe StAMP REGISIENcoitiiiiiiieiiiie et rtee ettt et rbe e e et e e sabe e e sabeeesbeeennteeennneas
Table 30: Transmit DesCriptor—CoOmMMANA/STATUSueeiveieiiieeiiiee ettt e e snbee e st nnneas 104
Table 31: Transmit DeSCrPtOr—BYte COUNT..........oii ittt e e et e e e e et e e e e e enbeeeeeaanebeeeeeaan 106
Table 32: Transmit Descriptor—BUTEr POINTET.........cooii i 106
Table 33: Transmit Descriptor—Next DeSCHPOr POINTETcoiiiiiiiiieeiieee e 106
Table 34: Receive DeSCHPLOr DESCIIPLONc.uvii ittt se et nees 111
Table 35: Receive Descriptor—ComMMand/STAtUSooiiiiiiiiiie et 112
Table 36: Receive Descriptor—Byte Count..........

Table 37: Receive Descriptor—Buffer Pointer

Table 38: Receive Descriptor—Next DeSCriptor POINLETcooiiiiiiiieiiee et 114
Table 39: RGMII /IMOdified MII SIGNAIS........oiiiiiiieeee e 119
Table 40: SMI Bit StrE@M FOMMAL.......ccuuiiiiiiiiii ettt e e s bt e et et e s sbee e e sbn e e s neas 125
Table 41: Definitions for MAC MIB COUNETS........ccouiiiiiiiaiie ettt ettt ettt see e ennee e 127
Table 42: Acronyms, Abbreviations, and DefinitioNSc..uiiii i 133
Table 43: Authentication of & Data ChUNK...........cuiiii et e e 137
Table 44: Security Accelerator Data Structure DWord 0—Configurationccvvevieerinienieee e 155
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 11

—

= 88F5182
M ARVELL® UserManual

Table 45: Security Accelerator Data Structure DWord 1—Encryption Pointerscccceeeeeee.
Table 46: Security Accelerator Data Structure DWord 2— Encryption Data Length
Table 47: Security Accelerator Data Structure DWord 3—Encryption Keys Pointer
Table 48: Security Accelerator Data Structure DWord 4—Encryption Initial Values Pointer

Table 49: Security Accelerator Data Structure DWord 5—MAC Source Pointer........c.ccooccevieiiiiienee i,
Table 50: Security Accelerator Data Structure DWord 6—MAC DigeSt.......coovuiiiriiieiiiieeiiiie i
Table 51: Security Accelerator Data Structure DWord 7—MAC Initial Values Pointers...........ccoccceeiiiiieneenn.
Table 52: Setting the Baud Rate REGISIENcii ittt
Table 53: UART PiN ASSIGNMENTScouiiiiiiie ittt ettt et sne e sn e e e s e e s e e sne e e e anre e e naneas
Table 54: Device Controller Pin ASSIGNMENTSooiiiiiiiiiiieiiiee ittt e bbb e s
Table 55: IDMA DeSCriptor DEFINITIONSeiiiiiiiiiiee ettt be e e e st e e s neas
Table 56: Descriptor Status Word Definitioncooiuiiiiiiiiiiie ettt
Table 57: Descriptor CRC-32 Result Word Definitioneeiiiiiiiiii e
Table 58: Descriptor Command Word DefiNItIONoooiiiiiiiieiii e

Table 59: Descriptor Next Descriptor Address Word
Table 60: Descriptor BYte COUNT WOIT.........uiiiiiiiiiiie ettt eer e e e st e nees
Table 61: Descriptor Destination AAAreSS WOIooiiiiiiiiiieiiiie ettt rre e
Table 62: Descriptor SOUrce AdAress #N WOTAS.oiiiuiiiiiieeiiiie ettt b b e nnneas
Table 63: EOC/EOD INTEIPIELALIONveeeieeiiiiiit ettt e e ettt e e ettt e e e s e bbbt e e e e s e sbbbeeeeaaabbbeeeeeaanbeeeeeaanebeeeaeaan
TADIE B4: IMDUS UNIES....oiiieiiiie ettt e ettt et e s n e e et e e et e e be e e e a st e eann e e s nbr e e e anne e e s nnns
Table 65: CPU Address Decoding Error HANAINGoooiiiiiiiieeiiiee et
Table 66: PCI EXPress Error HANAINGooooiiiiiiiee ettt e s easee e e e st ea e e e st e ae e s s nntraeaaeaan
Table 67: PCIEMOr HANAINGoooiiiiiiiiieiee ettt ettt e b e e s ba e sae e e s nb e e e snbn e e s neas
Table 68: USB ErrOr HANAINGcccviiiiiiieiiee ettt sttt sttt e st se et e e e nnne e e nnneas
Table 69: Standard Register Field TYPE COUEScoouuiiiiieiiiiiie ettt e st e e et e e e e e s eebeeaaeaas
Table 70: 88F5182 Internal Registers Address Map
Table 71: CPU REQISIEN MAP.....cc ittt ettt ettt r e e et e e s e e e s e e e s be e e st e s nn e e e anne e e nanees
Table 114: DDR SDRAM REQISIEN MAP ...uvviiiiiiiiiiie e iiitiee e estt et e e e st et e e e s st e e e s stb e e e e e s s ssaseeaessssseeaeesnntraeaaeaan
Table 145: PCI Express Register Map Table
Table 217: PCI INterface REGISIEN MAP ...ccouiiiiiiieiiie ittt ettt sttt sab e et e e s e e br e e s snneeesnneas
Table 320: SATAHC AQUIrESS SPACE......coiiuuiiiie ettt a e e ettt e e e e e b bt e e e e e aabb et e e e s aabbeeeeeeabbeeeeaansbeeeaeaan
Table 321: Serial-ATA Host Controller (SATAHC) REgISIErS Mapcccuvviiieieiniiieiiie e
Table 322: Shadow Register BIOCK REJISIEIS MAPccvviiiiiiiiiiieeeiiie et
Table 394: Ethernet Unit Global REGISEIS MaPciiuiiiiiiiiiiiiie ittt

Table 449: USB 2.0 Controller Register Map
(Offsets Port0: 0x50000—0x502FF, Portl: OXAOO00—0XAO2FF)......cciiiiiiiiieeeeiiieeeeeeiieee e eiieeeee 443

Table 450: USB 2.0 Bridge Register Map (Port0: 0xX50300—-0x503FF, Portl: OXA0O300—0xA03FF)................. 444
Table 451: USB 2.0 PHY Register Map (Port0: 0x50400, Port1l: OXA0300)........cccceieiiurieriieeiiieeeseeeeseeee e 445
Table 465: Cryptographic Engine and Security Accelerator Register Mapccooovveeiieiiiieiien e 451
Table 521: TWSI INterface REGISIEr MAPocvviiiiiieiiiie et e e
Table 529: UART Interface Registers Map
Table 542: Device Registers Mapccccoevevivinnivieniieesiie e

Table 551: IDMA Controller Interface REQISIEr MaP........ueeiiuiiiiiiieiiiie ettt
Table 568: XOR ENQINEG REGISIEN MAPueeiiiiiiiiie ettt ettt st e e e e e e e ee e e e e aabbeee e e snneeeeaaaaan
Table 591: GPIO Registers Map
Table 600: MPP REGISIEN MBI .. .eeeiiiiiiiitiieiiie ettt e et e a e e e s b et e s ane e e e b n e e e ne e e san e e e srneennns

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 12 Document Classification: Proprietary Information April 29, 2008, Preliminary

List of Figures

List of Figures

Figure 1: 88F5182 Interface BIOCK DIAGIaMcooiiiiiiiiiiiiii ettt et e e et e s e as 17
Figure 2: DDR BUISt WIItE EXAMPIEeeiiiiiiieiiiee ittt et e e s e e e ssn e nnneeeanree e e 25
Figure 3: DDR Burst Read EXample (CL = 2).....ciiiiiiiiiiee ettt ettt st e e st e ssee e snbeeeanneeennee 25

Figure 4: DDR SDRAM BanK INtErIEAVINGcccoi ittt ettt e e et e e e e e e e e e e e nnaeeeas 30
Figure 5: Consecutive Reads t0 the SAmME PAgE.........ccviiiiiiiiiiie it 31
Figure 6: DDR SDRAM RETESNuviiiiii ittt e e s e e e e e et e e e e e e atbe e e e e s enaaeeas 32
Figure 7: DDR2 /O BUTEI ...ttt e e e ettt e e e ettt e e e e sanb b e e e e e enbbeeeaeeeaannneaeas 36
Figure 8: High-level BIOCK DIAGIAMuiiiiiiieiieie ittt et e s s e s n e e ne e s s e e s nneeeanes 39
Figure 9: PCI Type 0 Configuration Transaction Address Translationcccccveeviiieiiiereniie e 52
Figure 10: PCI Type 1 Configuration TrANSACLIONeiiiiiiiiiiie ettt ettt e e e st e e e eneb e s saneeeae s 54
Figure 11: PCI Configuration SPace HEAUETcuuiiiiiiiiiie ettt e e

Figure 12: PCI Configuration Space Header (Continued)
Figure 13: 88F5182 Capability LiSt........cceeeeeeiiiiiiieiiiiieeeenes
Figure 14: SATAHC Block Diagram
Figure 15: Command Request QUEUE—32 ENIIIESccciuiiiiiieiiiie it seieeesiiee st e et e st s e e e e
Figure 16: Command ResSponse QUEUE—32 ENIIEScciiiiuiiiiiiiiiiiee ettt e e e bae e e e e s
Figure 17: Command Request Queue—128 Entries
Figure 18: Command Response Queue—128 Entries

Figure 19: EDMA INErrUPt HIEFAICNYoiiiiiieie ettt ettt e et e et e e e e e e annaeeeas
Figure 20: Ethernet Descriptors and BUFFEISooiiiiiiiiiie e
Figure 21: Ethernet Packet TransmisSion EXAMPIE.......ccuviiiiiiiiiiiei ettt eeetvae s
Figure 22: Transmit DeSCriptor DESCHPLIONiiii ittt e e st e e e e sreee e e s aeaaeeas
Figure 23: RGMII Pin Interconnection Between MAC and PHY ... 119
Figure 24: MDIO SOUrCEd DY PHY ..ottt e e e e e et e e e e e tb e e e e et e e e e e s esraeeas
Figure 25: MDIO SOUICEA DY DEVICEeiiiiiiiiiii ettt ettt e et e e st e e ete e e e e e e nereeeas
Figure 26: Ethernet Frame ClasSifiCatioNcccviiiiiiiiiiiiie et
Figure 27: Bad Frame PrOCEAUIEuviiie ettt e ettt e ettt e e e et e e e e s st e e e e e et e e e e e easbaeeaatbaeeeesssraeeas
Figure 28: Typical Authentication FIOW fOr @ PaCKEet............oiiiiiiiiiieiie e
Figure 29: DES ENQGINE PIPEIINEcooiiiiiiiie ettt e sne e b n e nan e e snnee s
Figure 30: Typical DES/3DES Packet Encryption Flow........

Figure 31: Typical AES Encryption Flow for a Data Block
Figure 32: Typical AES Decryption Flow for a Data Block

Figure 33: Security Accelerator Main DeCISION FIOWccciiiiiiiiiiiiiiiiiee ettt

Figure 34: Security Acceleration FIow for Packet ProCeSSINGcciiiiiiiiiiiiiiiiiiiee e 150
Figure 35: Security Acceleration Flow for Packet Processing—Enhanced Modecoccceeviiieviiienieecnneen, 151
Figure 36: IDMA Channel Descriptors Structure for Security Accelerator Packet Processing—Enhanced Mode152
FIQUIre 37: TWSI EXAMPIES ...ttt ettt e ettt e e e e e et et e e e e e ab bt e e e e e nbee e e snnte e e e e e antbaeeas 160
Figure 38: Device Block Diagram EXAMPIEccooouiiiiiiiiiiieiiie ettt 167
Figure 39: Up to 512-KB Device with Single Latch Block Diagram EXampleccccccoviieiniiinniieeniiee e, 168
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 13

—

= 88F5182
M ARVELL® UserManual

Figure 40: Address Multiplexing

Figure 41: 8-bit Flash Read Parameters EXamPIe..........coooiiiiiiiiiiie et
Figure 42: 8-bit Flash Write Parameters EXamPIE..........c.oooiiriiiiiiiiiiii ettt
Figure 43: Pipeline Sync Burst SRAM Read EXAMPIEcooiiiiiiiiiiiiiiiiie ettt
Figure 44: READYnN Extending ACC2First EXAmMPIEccvviiiiiiiiiieiiiee e
Figure 45: READYnN Extending ACC2NEeXt EXAMPIE.......ccuiiiiiiiiiiiie ittt
Figure 46: READYN Extending WILOW EXGMPIEccoi ittt ettt
Figure 47: BURSTN/DEV_LASTN EXAMPIEiiiiiiiiiiiiie ettt et
Figure 48: Chip Enable Don't Care NAND FIASh..........ccooiiiiiiiii e
Figure 49: CE Care NAND FIash USING MPPScoiiiiiiaiiiiiee ettt e e st eeeaaeeas
Figure 50: Mask ALE during NAND Flash Read Data Phasecccccoiiiiiiiieiiiic e
Figure 51: Generate Dedicated NAND Flash WE Signal..........cccueiiiiiiiiiiei et
Figure 52: Generate CE Covers All NAND Flash TranSactioncc.eeiieiiiiiiieiiiiiieee e
Figure 53: IDMA DESCIIPIOIS ...cccvveieiiiieiiiiieesiee e nreee et

Figure 54: Chained Mode IDMA
Figure 55: XOR Operation with Multiple Incoming Data Blocks

Figure 56: XOR iISCSI CRC32C OPEIALIONcccuvviiiureeeiiieeeaireeesireee sttt e st e s sssee s ssnee e st sneee s ss e e s asneeennneesnneens
Figure 57: XOR DESCIIPIOr FOIMAL.......uiiiiiiiiiiiie ettt e e e et e e e e e et e e e e e s etb e e e e e s stbaeeeasatseeeeeanntraeeas
Figure 58: Programmable Channel Pizza ArDITEN ...
Figure 59: 88F5182 Interrupt Controller SChEMEcouiiiiiiie e
Figure 60: Masters Request Default Arbitration CYCIE............cooviiiiiiiiiiiiii e
Figure 61: SATAHGC AGAIESS SPACE.ueiieiitiiiia et ee ettt e e et e e e e e e be et e e e e s beeee e e s et beeeaeaaasbeseaeeaseeeeesasbneeas
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 14 Document Classification: Proprietary Information April 29, 2008, Preliminary

Preface

About This Document

This document, provides a features list, product overview and interface description for the 88F5182
Feroceon® Storage Networking SoC. It also provides detailed information and definitions of the
device register set.

In this document the 88F5182 is also referred to as “the device”.

Related Documents

m 88F5182 Feroceon® Storage Networking SoC Datasheet, Doc. No. MV-S103345-00
m Orion SoC Hardware Design Guide, Doc. No. MV-S103315-001

m 88F5182 Feroceon Storage Networking SoC Functional Errata, Guidelines, and Restrictions,
Doc. No. MV-S500802-00

Feroceon® 88FR531-vd CPU Datasheet, Doc. No. MV-S104989-001
ARM Architecture Reference Manual, Second Edition

AMBA™ Specification, Rev 2.0

PCI Local Bus Specification, Revision 2.2

PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0b

PCI Express Base Specification, Revision 1.1

Serial-ATA Il Phase 1.0 Specification (Extension to SATA | Specification)

Universal Serial Bus Specification, Revision 2.0, April 2000, Compagq, Hewlett-Packard, Intel,
Lucent, Microsoft, NEC, Philips http://www.usb.org

Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 0.95,
November 2000, Intel Corporation http://www.intel.com

USB-HS High-Speed Controller Core referencel

RFC 1321 (The MD5 Message-Digest Algorithm)

FIPS 180-1 (Secure Hash Standard)

FIPS 46-2 (Data Encryption Standard)

FIPS 81 (DES Modes of Operation)

RFC 2104 (HMAC: Keyed-Hashing for Message Authentication).

RFC 2405 — The ESP DES-CBC Cipher Algorithm With Explicit IV

RFC 1851 — The ESP Triple DES Transform

FIPS draft - Advanced Encryption Standard (Rijndeal)

AN-123 Power Sequencing for Marvell Devices, Rev. A (Doc. No. MV-S300427-00)*

See the Marvell Extranet website for the latest product documentation.

1. This document is a Marvell proprietary confidential document requiring an NDA and can be downloaded from the
Marvell Extranet.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 15

http://www.intel.com
http://www.usb.org

—

= 88F5182
M ARVELL® UserManual

Document Conventions

Document Conventions
This document has the following name and usage conventions:

Signal Range A signal name followed by a range enclosed in brackets represents a range of logically related
signals. The first number in the range indicates the most significant bit (MSb) and the last
number indicates the least significant bit (LSb).

Example: DB_AD[31:0]

Active Low Signals n A n at the end of a signal name indicates that the signal’s active state occurs when voltage is
low.
Example: INTn

State Names State names are indicated in italic font.

Example: linkfail

Register Naming Register field names are enclosed in angle brackets:
Conventions Example: <SAddrOvr>
Register field bits are enclosed in brackets.
Example: Bits[31:0]
Register addresses are represented in hexadecimal format.
Example: 0x0
Reserved: The contents of the register are reserved for internal use only or for future use.

Abbreviations Gb: gigabit
GB: gigabyte
Kb: kilobit
KB: kilobyte
Mb: megabit
MB: megabyte

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 16 Document Classification: Proprietary Information April 29, 2008, Preliminary

Overview

Figure 1: 88F5182 Interface Block Diagram

Figure 1 is a block diagram of the 88F5182 interfaces.

Overview

The Marvell® 88F5182 is a high-performance, highly integrated, storage networking system engine.
It integrates the Marvell Feroceon® CPU core, which is compliant with the ARMV5TE architecture.

Feroceon CPU

32 KB 32KB

L1

Dcache Icache

L1

.

Local bus 64 bit up to 200 MHz

!

AHB to Mbus
Bridge

1L

Mbus

64 bits @ 166 MHz

g

&

o

SATA I
with
integrated
PHYs

X 2 ports

IDMA,
Xor,
Crypto-
graphic
engine

GPPs,
UART X 2,
TWSI
device

N

Express o USB 2.0
with PCI 32-bit Gigabit _with
intergrated Ethernet integrated
SERDES port port PHYs

X 2 ports
X 1 port

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Document Classification: Proprietary Information

Dual Channel
32 bit up to
166 MHz DDR1/
200 MHz DDR2
SDRAM Controller

Doc. No. MV-S103345-01 Rev. C

Page 17

—

= 88F5182
M ARVELL® UserManual

The 88F5182 incorporates the following:

Feroceon CPU
Core

DDR SDRAM

PCl Express

PCI

SATA 1l

Gigabit Ethernet

USB2

Cryptographic
Engine and
Security
Accelerator

Two-Wire Serial
Interface (TWSI)

UART
Device Bus

IDMA Engines

XOR Engine

General Purpose
I1/0 Port

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information

Compliant with V5TE Architecture, as published in the ARM Architect
Reference Manual, Second Edition. The Feroceon CPU core incorporates an
integrated 32/32 KB I/D L1 cache.

Includes a 16-/32-bit DDR1/DDR2 SDRAM controller.

Includes a single PCI Express (x1) host port, with an integrated low power
SERDES. The PCI Express port can also be configured as an Endpoint port.

32-bit conventional PCI interface, operating at a maximum frequency of
66 MHz.

Two SATA Il ports, fully compliant with SATA Il Phase 1.0 specification

(Extension to SATA | specification), supporting:

e SATA Il Native command queuing

* Backwards compatibility to SATA | 1.5-Gbps speed and devices

* In addition to full support of SATA Il Phase 1.0 specification (Extension to
SATA | specification), the 88F5182 supports the following advanced SATA II
Phase 2.0 specification features:

e SATA Il 3 Gbps speed

» Advanced SATA PHY characteristics for SATA backplane support

e SATA Il Port Multiplier Advanced Support

e SATA Il Port Selector control: Generates the protocol-based OOB
sequence to select the active host of the SATA Il Port Selector.

Consists of a single 10/100/1000-Mbps full-duplex Gigabit Ethernet (GbE) port.
It can be configured to a 10/100-Mbps Ml interface, or a 10/100/1000-Mbps
RGMII/GMII interface. When configured as an Mll interface, the Gigabit
Ethernet MAC can run not only at 10/100 Mbps, but also at 200 Mbps. This is
useful for higher throughput interfacing to the Marvell® Fast Ethernet switches.

Two USB 2.0 high-speed ports each with an embedded PHY. They can be
configured to either host ports or peripheral ports.

Supports data encryption and authentication. It also contains a dedicated DMA
to feed data from the local 8-KB SRAM into the arithmetic hardware.

Two-Wire Serial Interface (TWSI) port.

The UART Interface consists of two UART ports.
Includes a 32-bit Device interface.

Four IDMA engines, each with the ability to transfer data between any
interfaces.

Two additional XOR DMA engines, useful for Redundant Array of Independent
Disks (RAID) applications.

Each XOR DMA runs on a linked list of descriptors. It can read from up to eight
sources, perform bitwise XOR between the eight sources, and writes the result
to a destination. The sources and destination can reside in any of the 88F5182
interfaces.

26-bit general purpose 1/Os

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Overview

Interrupt Controller Handles interrupts from all of the various sources and forwards them to the
Feroceon CPU core.
When working in Endpoint mode, the interrupts can also be forwarded to the
Endpoint PCI-Express or the PCI/PCI_X interface.

Timers Two general purpose 32-bit-wide timers and a single 32-bit-wide watchdog
timer.

Internal The 88F5182 internal architecture is optimized for high-performance

Architecture applications. It includes an AHB bus for CPU to DDR SDRAM connectivity and

a proprietary full-mesh Mbus architecture for I/O connectivity.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 19

®
I;% 88F5182

M ARVELL® UserManual

2 Address Map

The 88F5182 has a fully programmable address map. There is a separate address map for each of
the device master interfaces. Each interface includes programmable address windows that allow it
to access any of the 88F5182 resources:

Feroceon® CPU core address map
PCI Express address map

PCI address map

SATA address map

Ethernet Controller address map
USB address map

IDMAs address map

XOR address map

|§ | | Although each master has independent address windows, when a resource is used by
multiple masters, all masters must use the same address map for this resource. This
Note means that all masters use the identical address window for each resource.

2.1 Feroceon® CPU Core Address Map

The Feroceon CPU core interface address map consists of eight programmable address windows
for the different interfaces and additional four dedicated windows for the DDR interface. See
Appendix A.4.1, CPU Address Map Registers, on page 243 and Appendix A.5.1, DDR SDRAM
Controller Address Decode Registers, on page 261.

For default address map see Table 1, “88F5182 Default Address Map,” on page 22.

2.2 PCIl Express Address Map

The PCI Express interface address map consists of three BARs that map the device’s address
space. One BAR is dedicated for the device’s internal registers while the other two are further
sub-decoded by six programmable address windows to the different interfaces of the device. See
Appendix A.6.1, PCI Express BAR Control Registers, on page 279.

For the default address map, see Table 1, with following exceptions.

m By default, access from the PCI Express interface to PCI interface is disabled.
m By default, access from the PCI Express to Device CS0 and Device CS1 is disabled.

2.3 PCIl Address Map

The PCl interface address map consists of 12 BARS address windows for the different interfaces.

For the default address map, see Table 1, with following exceptions.

m By default, access from the PCI interface to the PCI Express interface is disabled.

m By default, access from the PCI interface to Device CSO and Device CS1 is disabled.

m By default, I/O access from the PCI interface to the device’s internal registers is disabled.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 20 Document Classification: Proprietary Information April 29, 2008, Preliminary

2.4

2.5

2.6

2.7

2.8

2.9

Address Map
SATA Address Map

SATA Address Map

The SATAHC interface address map consists of four programmable address windows for the
different interfaces. See Section A.8.4, SATAHC Arbiter Registers, on page 362. By default the
SATAHC address map is enabled and addressed to the DRAM as specified in Table 1, 88F5182
Default Address Map, on page 22.

Gigabit Ethernet Address Map

The Gigabit Ethernet interface address map consists of six programmable address windows for the
different interfaces. See Section A.9.1, Gigabit Ethernet Unit Global Registers, on page 410. By
default the Gigabit Ethernet MAC address map is disabled.

USBO Address Map

The USBO interface address map consists of four programmable address windows for the different
interfaces. See Section A.10.3, USB 2.0 Bridge Address Decoding Registers, on page 446. By
default the USBO address map is disabled.

USB1 Address Map

The USBL1 interface address map consists of four programmable address windows for the different
interfaces. See Section A.10.3, USB 2.0 Bridge Address Decoding Registers, on page 446. By
default the USB1 address map is disabled.

IDMA Address Map

The IDMA interface address map consists of eight programmable address windows for the different
interfaces. See Section A.15.2, IDMA Address Decoding Registers, on page 490. By default the
IDMA address map is disabled.

XOR Address Map

The XOR interface address map consists of eight programmable address windows for the different
interfaces. See Section A.16.4, XOR Engine Address Decoding Registers, on page 505. By default
the XOR address map is disabled.

| ;I | Windows base addresses of the 88F5182 must be aligned to their size (for example, a

Not 128 KB address window must be aligned to 128 KB).
ote

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 21

®
I;% 88F5182

M ARVELL®

2.10

Table 1:

User Manual

Target Interface

DDR SDRAM CSO
DDR SDRAM CS1
DDR SDRAM CS2
DDR SDRAM CS3
Reserved

PCI Express Memory
PCI Memory

PCI Express I/0
Reserved

PCI /O

Security Accelerator Internal

SRAM Memory

NOTE: There is no access

to Security

Accelerator Internal
SRAM Memory from

the PCl interface.
Reserved
Internal Address Space®
Reserved
Device CSO
Device CS1
Device CS2

Flash Boot CS

Default Address Map

Target
Interfa
ce ID!

1

1

88F5182 Default Address Map

Target
Interfac
e
Attribut
22

Ox0E
0x0D
0x0B

0x07

0x59
0x59

0x51

0x51

0x00

Ox1E
0x1D
0x1B

OxOF

Address
Space
Size

256 MB
256 MB
256 MB
256 MB
1GB

512 MB
512 MB

64 KB

64 KB

64 KB

1MB

128 MB
128 MB
128 MB

128 MB

Address Range in
Hexadecimal

0000.0000-0FFF.FFFF
1000.0000—1FFF.FFFF
2000.0000—2FFF.FFFF
3000.0000-3FFF.FFFF
4000.0000-7FFF.FFFF
8000.0000-9FFF.FFFF
A000.0000-BFFF.FFFF
C000.0000-C000.FFFF
C001.0000-C7FF.FFFF
C800.0000-C800.FFFF

C801.0000-C801.FFFF
NOTE: Only 8 KB SRAM
is implemented.

C802.0000—CFFF.FFFF
D000.0000—DOOF.FFFF
D010.0000-DFFF.FFFF
E000.0000-E7FF.FFFF
E800.0000-EFFF.FFFF
F000.0000—F7FF.FFFF

F800.0000-FFFF.FFFF

1. Defines field <Target> in the window control registers. See Appendix A.4.1, CPU Address Map
Registers, on page 243 and Appendix A.6.4, PCI Express Address Window Control Registers, on

page 283.

2. Defines field <Attr> in the window control registers. See Appendix A.4.1, CPU Address Map
Registers, on page 243 and Appendix A.6.4, PCI Express Address Window Control Registers, on

page 283.

3. For the 88F5182 Internal Address Map, see Table 70 on page 241.

Doc. No. MV-S103345-01 Rev. C

Page 22

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Feroceon® CPU Core

3 Feroceon® CPU Core

The 88F5182 uses a Feroceon® CPU core.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 23

—

= 88F5182
M ARVELL® UserManual

4 DDR SDRAM Controller Interface

The DDR SDRAM (Double Data Rate-Synchronous DRAM) controller supports:
m Both 16-bit and 32-bit DDR SDRAM interfaces

m DDR1 SDRAM at up to 166 MHz and DDR2 SDRAM at up to 200 MHz.

m Up to two dual-sided DIMMs (four physical banks)
| |

A variety of DDR SDRAM components—x8 and x16 devices, at densities of 128 Mb, 256 Mb,
and 512 Mb

= Upto 1 GB (32-bit interface) and 0.5 GB (16-bit interface) total memory space

The DDR SDRAM controller is optimized for maximum DDR SDRAM bus utilization. It supports bank
interleaving between DDR SDRAM internal banks and physical banks. It also supports up to 16
open pages.

The DDR SDRAM controller supports DDR2 and ODT (On Die Termination).

4.1 Functional Description

The DDR SDRAM controller receives read and write requests from any of the other interfaces
through the 88F5182 Mbus, and the DDR SDRAM controller receives Feroceon® CPU core
requests from the direct AHB interface. The DDR SDRAM controller translates these requests to
DDR SDRAM transactions.

The DDR SDRAM controller splits long Mbus transactions into multiple 32-byte DDR
| ;] | SDRAM transactions. This split enables a Feroceon CPU core request to be served in
between the 32-byte DDR SDRAM accesses (The CPU request does not need to wait

NOte for the completion of the entire 128-Byte access).

The DDR SDRAM controller contains a transaction queue and read and write buffers. It can absorb
up to four read transactions and up to two write transactions of 128 bytes each.

Transactions from the Mbus are pushed into the transaction queue. The DDR SDRAM controller
arbitrates between the transaction from the top of the queue and transactions received from the AHB
path. The DDR SDRAM controller drives some of the address bits of the selected transaction on
M_A[13:0] and M_BA[1:0] during the activate cycle (M_RASN), and it drives the remaining bits
during the command cycle (M_CASnN).

For a write transaction, write data coming from the requesting unit is placed in the write buffer. The
SDRAM write buffer is necessary to compensate on the data rate differences between the received
write data rate (single data rate—SDR) and the rate it is driven to the SDRAM (double data
rate—DDR).

For a read transaction, after the command cycle (M_CASn), the DDR SDRAM controller samples
read data driven by the DDR SDRAM (The sample window depends on the CL parameter.), pushes
the data into the read buffer, and drives it back to the requesting unit.

An example of a write transaction is shown in Figure 2. The basic DDR SDRAM controller access to
DDR SDRAM consists of an activate cycle (row address), a command (column address), and a
precharge at the end of the transaction. Write data is driven with each of the rising and falling edges
of the clock, along with DQS. The DDR SDRAM controller also inserts the required preamble and
post-amble.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 24 Document Classification: Proprietary Information April 29, 2008, Preliminary

DDR SDRAM Controller Interface
Functional Description

Figure 2: DDR Burst Write Example

mcwkour|[| [L [[[L[L[L L0 L[LI []
M_A[13:0]
vearol D N S e
M.csn ____/ / ./
M_RASn ~\ activate/ krechargd
M_CASn gommand
vwen N U $ASSNNNES $ AE
M_DQSn /S
M_DQ[31:0] DO D3

An example of a read transaction is shown in Figure 3. The DDR SDRAM controller latches the
incoming data with each rise and fall of DQS input.

Figure 3: DDR Burst Read Example (CL = 2)

MCkouT 1 [[L[L[L[°L I °L T 1T LI 1

M_A[13:0]
MBALOIEE G (G s
MCsn— \ / /N
M_RASN w precharge
M_CASh ‘command
MWEnN 4V VYVl A
M_DQSn N A N A N
M_DQ[31:0]

4.1.1 Address Decoding

The DDR SDRAM controller interfaces the Feroceon CPU core directly via the AHB bus, and has its
own address decoding registers. It has an address window defined by the Base and Size registers
per each of the DDR SDRAM chip selects.

Every transaction initiated by the Feroceon CPU core on the AHB bus is decoded against these four
windows. If there is a hit, the transaction is forwarded to the appropriate DDR SDRAM chip select.

4.1.2 Arbitration and Ordering

Transactions coming from the 88F5182 Mbus are pushed into a transaction queue.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 25

—

= 88F5182
M ARVELL® UserManual

The DDR SDRAM controller arbitrates between the transaction at the top of the queue and
transactions coming from AHB bus. Whenever there is a pending Feroceon CPU core transaction, it
will get a priority over a pending Mbus transaction. While the DDR SDRAM controller is serving one
transaction, the arbiter selects the next transaction to be served from the AHB bus or from the top of
the transaction queue. In this manner, the DDR SDRAM controller pipelines transactions to the DDR
SDRAM, resulting in maximum DDR SDRAM bus utilization.

The DDR SDRAM controller transaction queue maintains transaction ordering between the source
unit over the 88F5182 Mbus and the DDR SDRAM. In addition, when an Feroceon CPU core
transaction is received, the DDR SDRAM controller performs a lookup against the pending
transactions in the queue. If the newly received address matches one of the addresses already in
the queue, the Feroceon CPU core transaction is postponed until the transactions in queue are
flushed to DDR SDRAM. This mechanism is required to maintain ordering between Feroceon CPU
core and I/O devices.

4.1.3 Lock Transactions

The Feroceon CPU core can generate locked transactions. This is typically used for
Read-Modify-Write accesses (such as semaphore update). When DDR SDRAM controller receives a
locked transaction from the Feroceon CPU core, it no longer serves any further 1/O transactions until
CPU lock de-assertion.

|§ | | If the <LockEn> bit[18] in the DDR SDRAM Control Register (Table 124 p. 264) is
cleared, The DDR SDRAM controller ignores the lock indication from the Feroceon
Note CPU core.

4.1.4 Error Handling

The only error case that the DDR SDRAM controller is required to handle, is a write access with
erroneous data indication from the initiator unit. If the <Perr> bit[18] in the DDR SDRAM
Configuration Register is set to 1, the DDR SDRAM controller does not write the erroneous data to
DDR SDRAM.

| ;] | Upon a write to the DDR SDRAM Control Register (Table 124 p. 264) file with an

Not erroneous data indication, the data from the write transaction is discarded.
ote

4.1.5 Clock Domains

The 88F5182 Mbus runs at TCLK clock domain. The AHB bus and DDR SDRAM run at the SYSCLK
clock domain.

The /O traffic from Mbus to DDR SDRAM goes through TCLK/SYSCLK synchronizers. However,
the AHB and DDR SDRAM share the same clock tree, and do not require any synchronization. This
is important for low latency CPU to DDR SDRAM access.

4.2 DDR SDRAM Addressing

The 88F5182 supports 128-, 256-, and 512-Mb DDR1 SDRAM devices as well as 256- and 512-Mb
DDR2 devices, in x8 and x16 configurations. The DDR SDRAM devices differ in the usage of
M_A[13:0] and M_BA[1:0] lines, as described in Table 2.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 26 Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 2:

SDRAM Type

128 Mb DDR1

256 Mb

512 Mb

16 Mb x 8

8 Mb x 16

32Mbx 8

16 Mb x16

64 Mb x 8 DDR1

64 Mb x 8 DDR2

32 Mb x 16

DDR SDRAM Addressing

Internal
Bank
Address

M_BA[1:0]
M_BA[1:0]
M_BA[1:0]
M_BA[1:0]

M_BA[1:0]

M_BA[1:0]

M_BA[1:0]

DDR SDRAM Controller Interface
DDR SDRAM Addressing

Row
Address

M_A[11:0]
M_A[11:0]
M_A[12:0]
M_A[12:0]

M_A[12:0]

M_A[13:0]

M_A[12:0]

Column Auto
Address Precharge
M_A[9:0] M_A[10]
M_A[8:0] M_A[10]
M_A[9:0] M_A[10]
M_A[8:0] M_A[10]
M_A[11], M_A[10]
M_A[9:0]

M_A[9:0] M_A[10]
M_A[9:0] M_A[10]

The DDR SDRAM controller supports up to four DDR SDRAM physical banks (DDR SDRAM chip
selects). The total DDR SDRAM bank address space is determined by the nature of the DDR

SDRAM devices. For example, a bank using a build up of four 256 Mb x8 devices (32Mx8) has a
128-MB address space.

The DDR SDRAM controller multiplexes the address bits of the received transaction (from the Mbus
or the AHB bus) to the row, column, and internal bank address. It always place the MSB bits of the
received address onto the DDR SDRAM BA[1:0] bits as shown in the Table 3 and Table 4.

Address Multiplex for 32-bit DDR SDRAM Interface

Column M_A[11:0]

Table 3:
SDRAM Type
128 Mb 16 Mb x 8
8 Mb x 16
256 Mb 32Mb x 8
8 Mb x 32
512 Mb 64 Mb x 8 DDR1

Copyright © 2008 Marvell
April 29, 2008, Preliminary

64 Mb x 8 DDR2

32 Mb x 16

M_BA Row M_A[13:0]
[1:0]

25-24 26, 24, 22-11
24-23 26, 24, 22-11
26-25 26, 24, 22-11
25-24 26, 23, 22-11
27-26 26, 24, 22-11
27-26 25,24, 22-11
26-25 26, 24, 22-11

Document Classification: Proprietary Information

25,"0", 23,10-2
25,"0", 23, 10-2
25, 0", 23, 10-2
25,"0", 23,10-2
25,"0", 23, 10-2
25,07, 23, 10-2

25, 0", 23, 10-2

Doc. No. MV-S103345-01 Rev. C

Page 27

—

= 88F5182
M ARVELL® UserManual

Table 4: Address Multiplex for 16-bit DDR SDRAM Interface

SDRAM Type M_BA Row M_A[13:0] Column M_AJ[11:0]
[1:0]
128 Mb 16 Mb x 8 24-23 25, 23, 21-10 24,"0", 22, 9-1
8 Mb x 16 23-22 25, 23, 21-10 24,0", 22,9-1
256 Mb 32Mbx8 25-24 25, 23, 21-10 24,40", 22,9-1
16 Mb x16 24-23 25, 22,21-10 24,%0", 22, 9-1
512 Mb 64 Mb x 8 DDR1 26-25 25, 23, 21-10 24,%0", 22, 9-1
64 Mb x 8 DDR2 26-25 24, 23, 21-10 24,0", 22,9-1
32 Mbx 16 25-24 25, 23, 21-10 24,0", 22,9-1
4.3 DDR SDRAM Timing Parameters

The DDR SDRAM controller supports a wide range of DDR SDRAM timing parameters (see
Table 5). These parameters can be configured through the DDR SDRAM Mode Register
(Table 133 p. 269) and the DDR SDRAM Timing (Low) Register (Table 125 p. 265) and DDR
SDRAM Timing (High) Register (Table 126 p. 266).

DDR SDRAM timing parameters are the same to all DDR SDRAM physical banks.

Note The DDR SDRAM Trc timing parameter is the sum of Tras and Trp.

Table 5: DDR SDRAM Timing Parameters

DDR SDRAM Timing Description

Parameters

CAS Latency (CL) The number of cycles from M_CASn assertion to the sampling of
the first read data.
The DDR SDRAM controller supports CL of 1.5, 2, 2.5, 3, 4, or 5
cycles.

RAS Precharge (Trp) The minimum number of cycles from precharge to a new activate
cycle, to the same DDR SDRAM bank.

M_RASn to M_CASn The minimum number of cycles between an activate cycle and a

(Tred) command cycle, to the same DDR SDRAM bank.

Row Active Time (Tras) The minimum number of cycles between an activate cycle and a
precharge cycle, to the same DDR SDRAM bank.

Write to Precharge (Twr) The minimum number of cycles between a write command and a
precharge cycle, to the same DDR SDRAM bank.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 28 Document Classification: Proprietary Information April 29, 2008, Preliminary

4.4

DDR SDRAM Controller Interface
DDR SDRAM Burst

Table 5: DDR SDRAM Timing Parameters (Continued)

DDR SDRAM Timing Description

Parameters

Write to Read (Twtr) The minimum number of cycles between a write command and a
read command, to the same DDR SDRAM device.

Active to Active (Trrd) The minimum number of cycles between the activation of bank A
and the activation of bank B, in the same DDR SDRAM device.

Refresh Command (Trfc) The minimum number of cycles between a refresh command and
a new activate command.

Read to Read (Tr2r) The minimum number of cycles between consecutive read

commands to different devices. It is not part of the JEDEC spec. It
is used for preventing contention between consecutive reads to
different DDR SDRAM devices (different chip selects).

The DDR SDRAM controller supports Tr2r of 1 or 2 cycles.

Read to Write and Write to = The minimum number of cycles between read command to write
Read (Tr2w_wz2r) command. It is not part of the JEDEC spec. It is used for
preventing contention between consecutive read after write or
write after read.
The DDR SDRAM controller supports Tr2w_w2r of 1 or 2 cycles.

DDR SDRAM Burst

A DDR SDRAM device can be configured to different burst lengths and burst ordering. The 88F5182
DDR SDRAM controller supports only a Burst Length(BL) setting of four. It only supports linear wrap
around burst type. (The <BT> bit of the DDR SDRAM Mode Register (Table 133 p. 269) must be set
to 0.)

A single DDR SDRAM access can vary from a single byte up to a 32B burst, which turns out to be a
burst of four cycles (8 beats) on a 32-bit DDR SDRAM interface, or 8 cycles (16 beats) on a 16-bit
DDR SDRAM interface.

When the required DDR SDRAM access is not a full multiple of the DDR SDRAM burst lengths (BL),
the burst needs to be terminated. The DDR SDRAM controller terminates the burst by driving a
precharge cycle and asserting the DM signals.

m Inthe case of open pages, the burst is not terminated with a pre-charge but with
EI burst terminate command (BST). This is done to keep the page open (see
Section 4.5, DDR SDRAM Open Pages, on page 30).
= In DDRZ2, burst cannot be terminated before reaching the BL boundary.
(There is no BST command.)

Note

Since the DDR SDRAM controller effectively accesses 64-bits for each cycle (In the case of 32-bit
DDR SDRAM interface), it always accesses the DDR SDRAM to 64-bit aligned addresses and uses
DM to mask non-desired writes. For example, a three 32-bit word burst write to offset Ox1 is
executed as a write of four 32-bit words to offset 0x0, with DM masking the first 32-bit word.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 29

—

= 88F5182
M ARVELL® UserManual

4.4.1 DDR SDRAM Bank Interleaving

The 88F5182 supports both physical banks (M_CSn[3:0]) interleaving and internal banks
(M_BA[1:0]) interleaving.

Interleaving provides higher system performance by hiding the active cycles of a new transaction
during the data cycles of a previous transaction. This technique gains maximum utilization of the
DDR SDRAM bus bandwidth.

Interleaving occurs when there are multiple pending accesses to different DDR SDRAM banks,
whether the accesses are by internal banks distinguished by different M_BA[1:0] values or physical
banks distinguished by different M_CSn[3:0].

The DDR SDRAM controller performs bank interleaving between the current active transaction and
the next transaction to be executed. It does not matter to the controller whether the next transaction
comes from the 88F5182 Mbus or from AHB bus.

Figure 4 shows an example of interleaving between two reads to different internal banks.

Figure 4: DDR SDRAM Bank Interleaving

ckout"N_ /N /NN L
Al13:0] {__Row Col Col
BA[1:0] 0x0 0x1

) S W S N A S
RAS* Active Y Active . Prech /
CAS Cmd Y Cmd

wililily U YV U -, 0a
Das* I N N L —
DQ[31.0]

Since the two accesses are targeted to different internal banks (BA[1:0]), interleaving is enabled.
Activate and command cycles of the second transaction are issued while the first transaction is
receiving read data.

4.5 DDR SDRAM Open Pages

It is possible to configure the 88F5182 DDR SDRAM controller to keep DDR SDRAM pages open. It
supports up to 16 open pages simultaneously—one page per each internal bank.

When a page is kept open at the end of a burst (no precharge cycle) and if the next cycle to the
same internal bank hits the same page (same row address), there is no need for a new activate
cycle. Figure 5 shows an example of access to an open page.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 30 Document Classification: Proprietary Information April 29, 2008, Preliminary

DDR SDRAM Controller Interface
DDR SDRAM Refresh

Figure 5: Consecutive Reads to the Same Page

mcwkour | || | L[| 7 7 [/ [/ [[1L
M_A[13:0]

VEZGEON O G $2@aas 00
M_csn N\ \
M_CASn = _Read / __Read
MWwen Y 4V A——
M_DQSn \ /NS S S —
M_DQ[31:0]

Once a page is open, it remains open until one of the following events occurs:
m There is an access to the same bank but to a different row address. The DDR SDRAM
controller performs a precharge (closes the page) and opens a new one (the new row address).

m The refresh counter expires. The DDR SDRAM controller closes all open pages and performs a
refresh to all banks.

4.6 DDR SDRAM Refresh

The 88F5182 implements standard CAS before RAS refreshing.

The refresh rate for all banks is determined according to the 14-bit Refresh value in DDR SDRAM
Configuration Register (Table 123 p. 263). For example, the default value of Refresh is 0x200. If the
M_CLK_OUT frequency is 166 MHz (6 ns cycle), a refresh sequence occurs every 3.072 ps.

Every time the refresh counter reaches its terminal count, a refresh request is sent to the DDR
SDRAM controller. It has a higher priority over any other DDR SDRAM access request. As soon as
the current outstanding DDR SDRAM transactions complete, the DDR SDRAM controller
precharges all banks (both the ones that are open, and the ones that are not open), and performs an
automatic refresh command to all DDR SDRAM banks.

Figure 6 shows a refresh cycle example.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 31

—
=
—

M ARVELL®

88F5182
User Manual

Figure 6: DDR SDRAM Refresh

TCLK
M_A[13:0]

M_BA[1:0]
|« Tric »

M_RASnN \Refresh{ \Activate/

M_CASn

/

vwen IR U W

M_CSn[3:0] |

OxFF X _ox0 X OXFF ¥ N

4.7 DDR SDRAM Initialization

The DDR SDRAM controller automatically starts the DDR SDRAM initialization sequence as soon
as the Feroceon CPU core sets field <InitEn> in the DDR SDRAM Initialization Control Register
(Table 135 p. 271) to 1.

The software must initialize the DDR SDRAM Control registers prior to setting the <InitEn> bit.

The <InitEn> bit in the DDR SDRAM Initialization Control Register

| |
| §| | (Table 135 p. 271) can be set only once by the CPU. To change the SDRAM mode

and SDRAM extended mode values after initialization has finished, see

Note Section 4.8, DDR SDRAM Operation Register.

m The DDR SDRAM controller postpones any attempt to access DDR SDRAM
before the initialization sequence completes. The software needs to poll the
<InitEn> field until it resets to 0 before issuing the first access to the DDR SDRAM.

DDR1 Initialization Sequence

After the Feroceon CPU core sets field <InitEn> in the DDR SDRAM Initialization Control Register
(Table 135 p. 271), the DDR SDRAM control unit automatically performs the following steps:

1.
2.

w

No oA

Precharge all DDR SDRAM banks (all four physical banks).

Issue EMRS command based on the Extended DDR SDRAM Mode Register value, to enable
the DDR SDRAM DLL.

Issue MRS command based on the DDR SDRAM Mode Register (Table 133 p. 269) values,
with the reset <DLL> bit [8] activated.

Wait 200 cycles.

Precharge all banks.

Generate two auto-refresh cycles.

Load the DDR SDRAM Mode Register with the default DDR SDRAM parameters and with the
reset <DLL> bit [8] de-activated.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 32

Document Classification: Proprietary Information April 29, 2008, Preliminary

4.8

DDR SDRAM Controller Interface
DDR SDRAM Operation Register

DDR2 Initialization Sequence

DDR?2 initialization sequence consists of the following steps:

1. Precharge all DDR SDRAM banks (all four physical banks).
2. Issue command EMRS(2).

3. Issue command EMRS(3).

|§ | | Extended Mode registers 2 and 3 are reserved registers for future use. Still, the DDR2
initialization sequence requires setting of these registers. The DDR SDRAM controller
Note sets these registers to a value of 0x0.

4. Issue the EMRS command based on the Extended DDR SDRAM Mode Register
(Table 134 p. 270) value to enable the DDR SDRAM DLL.

5. Issue MRS command based on the DDR SDRAM Mode Register (Table 133 p. 269) values,

with the reset <DLL> bit [8] activated.

Wait 200 cycles.

Precharge all banks.

Generate two auto-refresh cycles.

Issue the MRS command based on the DDR SDRAM Mode Register values, with the reset

<DLL> bit [8] de-activated.

The DDR2 DDR SDRAM Mode Register (Table 133 p. 269) and Extended DDR SDRAM Mode

Register (Table 134 p. 270) contain fields that do not exist in DDR1 SDRAM:

m WR (Write Recovery for Auto-Precharge): Not relevant; the 88F5182 does not use
auto-precharge.

m PD (Active Power Down Exit Time): Not relevant; the 88F5182 does not support power down
mode.

DIC (Output Driver Impedance Control): Selects normal or weak output impedance.
Additive Latency: Not supported.

m Rtt (Termination Control): Selects DDR SDRAM termination value: 75 ohm, 150 ohm, or none
(see Section 4.12, DDR2 On Die Termination (ODT)).

m RDQS and DQS: Controls DQS configuration. The 88F5182 does not support RDQS nor
differential DQS signaling.

DDR SDRAM Operation Register

In addition to the normal DDR SDRAM operation mode, DDR SDRAM controller also supports
special DDR SDRAM commands through the DDR SDRAM Operation Register (Table 131 p. 268).
These operations include:

= Normal DDR SDRAM mode (default mode)

NOP commands

Precharge all banks

Load the DDR SDRAM Mode Register (Table 133 p. 269).

Load the Extended DDR SDRAM Mode Register (Table 134 p. 270).

m Force a refresh cycle

©® N

The register contains 3 bits of command type. Once the Feroceon CPU core changes the register
default to one of the command types, the DDR SDRAM controller executes the required command,
resets the register back to the default value, and returns to normal operation. The Feroceon CPU
core must poll on this register to identify when the DDR SDRAM controller is back in normal
operation mode.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 33

—

= 88F5182
M ARVELL® UserManual

When using DDR SDRAM DIMMs, the DDR SDRAM parameters are recorded in the
| ;I | DIMM Serial Presence Detect (SPD) serial ROM. The Feroceon CPU core can read the
SPD via the 88F5182 TWSI interface and program the DDR SDRAM parameters

Note accordingly, using the Load Mode register command.

The Feroceon CPU core must not attempt to change the DDR SDRAM Mode Register

(Table 133 p. 269) setting prior to DDR SDRAM controller completion of the DDR SDRAM
initialization sequence. To guarantee this restriction, it is recommended that the Feroceon CPU core
sets the DDR SDRAM Operation Register to NOP command, performs read polling until the register
is back in the Normal operation value, and then set the DDR SDRAM Mode Register to its new
value.

4.9 DDR SDRAM Self Refresh Mode

The DDR SDRAM controller also supports DDR SDRAM Self Refresh mode.

The DDR SDRAM controller puts DDR SDRAM in Self Refresh mode by generating a refresh cycle
with M_CKEXx driven low. When exiting self refresh, it drives M_CKEXx high, and waits for 200 cycles,
before generating any new read transaction to DDR SDRAM.

88F5182 drives these signals in the same way. If board topology does not require
use of all of these signals, it is possible to only use one of the signals.

Note g The 88F5182 continues driving M_CLK_OUT and M_CLK_OUTn when DDR
SDRAM is in Self Refresh mode.

EI m There are two CKE signals (M_CKE[1:0]) for load balancing purposes. The

49.1 Power Saving Mode

The DDR SDRAM Self Refresh mode is useful for power saving purposes when the system is in

Standby mode. To enter this mode, the following procedure must be followed.

1. The Feroceon CPU core sets the <Cmd> field [2:0] in the DDR SDRAM Operation Register
(Table 131 p. 268) to 0x7.

2. The DDR SDRAM controller waits for 256 cycles and then generates a self refresh command to
DDR SDRAM and clears the DDR SDRAM Operation Register (Table 131 p. 268).

3. Ifthere are new pending transactions to DDR SDRAM, the DDR SDRAM controller sets
M_CKEO/1 and waits 200 cycles before generating a new transaction to DDR SDRAM.

| ;| | In this mode, all of the DDR SDRAM signals (excluding M_CLK_OUT, M_CKEO/1, and

Not M_STARTBURST) are floated, significantly reducing the power consumption.
ote

It is the responsibility of the system software to trigger the DDR SDRAM Self Refresh mode, only
when the system is in Standby mode and is unlikely to receive new DDR SDRAM access requests,.
It is recommended that the software, after requesting Self Refresh mode, wait 256 SYS_CLK cycles,
and then reads DDR SDRAM Operation Register to confirm that the DDR SDRAM is in Self Refresh
mode.

When the DDR SDRAM is in Self Refresh mode, the DDR SDRAM can only be accessed with a
read/write transaction.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 34 Document Classification: Proprietary Information April 29, 2008, Preliminary

DDR SDRAM Controller Interface
DDR SDRAM Address/Data Drive

! Attempts to access the DDR SDRAM with one of the operation commands (e.g., the

Caution MRS command) results in a system hang.

4.10 DDR SDRAM Address/Data Drive

The DDR SDRAM clock is driven by the M_CLK_OUT/M_CLK_OUTn differential pair in the
88F5182. All DDR SDRAM address and control signals driven by the 88F5182 (single data rate
signals) are coupled to the rising or to the falling edge of this clock, according to the setting of the
<CtrlPos> field [6] of the DDR SDRAM Control Register (Table 124 p. 264).

|§ | | Typically, address and control signals are driven with the rising edge of M_CLK_OUT.
However, under certain board topology and DDR SDRAM load, there may be a hold
Note time problem on these signals. In this case, use the falling edge setting (0).

The front-end logic of the DDR SDRAM controller is responsible for correctly driving of the double
data rate data with the M_DQSn signals, as well as for unpacking of the data from 64-bit SDR to the
32-bit DDR.

During a write transaction, 64-bit wide data is pulled out of the write buffer and driven as 32-bit DDR
on the bus. The first 32-bit is driven with rising edge of M_CLK_OUT and the second 32-bit with
falling edge of M_CLK_OUT. The DDR SDRAM controller drives DQS (data strobe) along with the
data. The DDR SDRAM specification requires very accurate DQS timing in respect to the DDR
SDRAM clock. The DDR SDRAM controller uses an accurate DLL + delay line to “put the data in
place” (shift DQ by 1/4 cycle).

4,11 DDR SDRAM Read Data Sample

The front-end logic of the DDR SDRAM controller is responsible for the correct sampling of the DDR
data with M_DQSn signals, as well as the packing of data from 32-bit DDR to 64-bit SDR. The 32-bit
DDR read data is latched via the received DQS (shifted by 1/4 cycle, via delay line). The first 32-bits
are sampled with the rising of DQS, and the next 32-bit data with the falling of DQS.

To meet the DDR SDRAM AC specification, packed 64-bit read data cannot simply be sampled with
the internal DDR SDRAM controller clock. The exact sample point depends on CL (CAS latency)
and board topology. The controller drives a M_STARTBURST_OUTn signal. This signal is routed on
board all the way to the DDR SDRAM, and back to the controller as M_STARTBURST_INn
feedback. This signal is used as a reference for proper data sampling.

For a proper sample of read data, set the <StBurstDel> field [27:24] in the DDR SDRAM Control
Register (Table 124 p. 264) according to Table 6.

Table 6: Read Data Sampling Window Configuration

CL=1.5 CL=2 CL=2.5 CL=3 CL=4
No register 0011 0011 0100 0100 0101
Registered DDR 0100 0100 0101 0101 0110
SDRAM
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 35

—

= 88F5182

M ARVELL® UserManual

4.12

DDR2 On Die Termination (ODT)

The DDR2 supports dynamic turn ON and OFF of termination resistors within the DDR SDRAM 1/O
buffers, as well as the DDR SDRAM controller I/O buffers. Figure 7 shows the DDR2 1/O bulffer.

Figure 7: DDRZ2 I/O Buffer

VDDQ VDDQ

.

VSSQ VSSQ

The R1 nominal value is 300 ohm, and R2 nominal value is 150 ohm, resulting in Rtt (R/2) of 150
ohm or 75 ohm, respectively.

The DDR SDRAM controller has four ODT signals (M_ODT[3:0]) per the four DDR SDRAM physical
banks. There is a fifth ODT signal internal to the 88F5182 to control the termination inside the
device’s I/O buffers. The ODT signals can dynamically turn the DDR SDRAM termination ON and
OFF. This is useful for maintaining proper signal integrity with minimum reflections on the lines,
without adding any external termination resistors.

The Extended DDR SDRAM Mode Register (Table 134 p. 270) <Rtt> fields control whether to use
R1 or R2 termination during ODT operation, or disable termination.

Typically, when driving a signal and eliminating reflections, place a termination resistor at the end of
the line. When the 88F5182 drives data on the DQ lines (write transactions), it is desired to turn ON
the termination on the DDR SDRAM. On the other hand, when the DDR SDRAM is driving DQ
signals (read transactions), it is required to turn ON the termination on the 88F5182 1/O buffer.

In a multiple DDR SDRAM physical banks environment, termination topology is more complex. It
requires some board simulation. The 88F5182 DDR SDRAM controller gives the full flexibility to
select which of the four DDR SDRAM physical bank terminations to turn ON or OFF per any read or
write transaction to any of the four banks. The turn ON and turn OFF timing is also configurable.

Since DDR SDRAM termination turn ON timing is two cycles, when using CL =3 (i.e., a
| ;| | write latency of 2), the DDR SDRAM controller needs to delay the write command by
one cycle. To assert ODT one cycle before the command, activate termination during

Note the write preamble.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 36

Document Classification: Proprietary Information April 29, 2008, Preliminary

DDR SDRAM Controller Interface
DDR SDRAM Interface I/O Buffers

The DDR SDRAM controller can also be configured to a static termination configuration—rather than
a dynamic termination configuration—on a per transaction basis.

4.13 DDR SDRAM Interface I/O Buffers

The DDR SDRAM interface supports the standard SSTL_2 and SSTL_18 specs. For DDR1
operation, use parallel termination on all DDR SDRAM interface signals (including CLK and CLKn).
For DDR2 operation, there is no need for external termination (see Section 4.12, DDR2 On Die
Termination (ODT), on page 36).

The DDR SDRAM interface I/O buffers have a calibration mechanism to control buffer output
impedance. Calibration is automatically performed after reset, against an external resistor tied to the
M_CAL pin. The auto calibration setting can later be overridden by a software setting of the DDR
SDRAM Address/Control Pads Calibration Register (Table 136 p. 272) and DDR SDRAM Data Pads
Calibration Register (Table 137 p. 272).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 37

M ARVELL®

5

5.1

—
=
—

88F5182
User Manual

PCI Express Interface

The PCI Express interface is a x1 Root Complex port, allowing 250 MB of bandwidth in ingress and
egress directions simultaneously, with a total bandwidth of 500 MB. This interface has the following
features:

PCI Express Base 1.0a compatible

Root Complex port

Can be configured also as an Endpoint port

Embedded PCI Express PHY based on Marvell® SERDES technology
x1 link width

2.5 GHz signalling

Lane polarity inversion support

Replay buffer

Maximum payload size of 128 bytes

Single Virtual Channel (VC-0)

Ingress and egress Flow Control

Extended Tag support

Interrupt emulation message support

Power management: LOs-Rx and SW L1 support

Advanced Error Reporting (AER) capability support

Single function device configuration header.

Message Signaled Interrupts (MSI) capability support, as an Endpoint.
Power Management (PM) capability support, as an Endpoint.
Expansion ROM support

Programmable address map.

Functional Description

The PCI Express (PCle) interface uses a layered architecture, according to the PCI Express
specifications. The main layers are the PHY layer, MAC layer, Data Link layer and Transaction layer.
In addition, a Core Adapter layer handles the forwarding of the PCle TLPs (Transaction Layer
Packets) to the internal bus.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 38

Document Classification: Proprietary Information April 29, 2008, Preliminary

5.1.1

5.1.2

5.1.3

PCI Express Interface
Functional Description

Figure 8: High-level Block Diagram

PCI Express Port

Transaction Data Link Layer MAC Layer PHY Layer

SN SN
=

Replay

[Core Adapter
Buffer

Internal
Bus

and
Rx

Buffer

BN
Rx <ﬁ

T

PHY Layer

On the Tx path, the PHY layer receives symbols from the MAC layer, converts them into a serialized
format, and transmits them on the PCle port. On the Rx path, the PHY layer receives a serialized
stream from the PCI-E port, and forwards them as parallel symbols to the MAC layer.

The PHY handles symbol-locking and 8b10b encoding/decoding. The PHY is responsible for
compensating for the skew between the different lanes. This is called lane-to-lane deskew. Such
differences can be caused by factors such as board routing. The PHY forwards the aligned symbol
to the MAC layer.

The PHY layer is responsible also for the clock tolerance compensation. The received symbol
stream is adapted to the local clock, by adding or deleting skip OSs (Ordered Sets).

MAC Layer

The MAC layer’s is responsible for establishment and maintenance of the PCI Express link, packet
framing and data packing according to the link width. The PCI Express LTSSM (Link Training and
Status State Machine) is located in this layer. It contains all the functionality for link configuration in
terms of the link width, lane polarity, and lane numbering. Additionally, the MAC layer performs the
scrambling and functions. The MAC layer controls the different link power-management modes,
loopback mode, link disable mode and link hot-reset function. In addition, the MAC layer handles the
generation and detection of the various TSs (Training Sequences) and OSs (Ordered Sets).

On the Tx path, the MAC layer receives packets (TLPs and DLLPs—Data Link Layer Packets) from
the Data Link layer. The packets are framed, scrambled, and packed into the relevant link width and
forwarded to the PHY.

On the Rx path, the MAC layer receives aligned symbols from the PHY. The symbols are un-packed
according to the relevant link width and un-framing is performed. The packets (DLLPs and TLPs) are
then extracted from the frames and forwarded to the Data Link layer.

Data Link Layer

The Data Link layer provides a reliable TLP exchange between two components on the PCle link.
This layer performs most of the data integrity functions as specified by the PCle 1.0a specifications.

The Data Link layer controls the sequence number generation and detection. It also controls the
LCRC generation and detection. Outgoing TLPs are temporarily stored in a replay buffer until an
acknowledge is received from the far-end component. When a corrupted or missing TLP is detected,

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 39

—

= 88F5182

M ARVELL® UserManual

5.1.4

5.2

5.3

the replay mechanism is used to recover and maintain reliable Transaction layer to Transaction layer
connection. The replay buffer holds transmitted packets and re-transmits them when required.

The Data Link layer handles the generation and processing of DLLPs. DLLPs are used for
conveying information such as Flow Control, TLP acknowledgment, and power management
handshake.

Transaction Layer

The Transaction layer primary responsibility is handling of TLPs. Outgoing TLPs are assembled and
scheduled for transmission. Incoming TLPs are parsed and checked for various errors. In addition,
the Transaction layer is responsible for handling the split transaction protocol—both towards the
PCle port and the internal bus.

The Tx path accepts TLPs from the internal bus and schedules them for transmission according to
the Flow Control credit availability and the relevant ordering rules. Non-Posted (NP) TLPs are
assigned with a unique tag before they are scheduled for transmission. TLPs are then passed on to
the Data Link layer for transmission.

The Rx path examines the incoming TLPs for a variety of packet formation errors. Incoming
completions tags are checked to determine if they belong to a valid NP request sent by the device.
TLPs are then passed over to the internal bus.

Master Memory Transactions

Master memory transactions are memory space read and write requests (MRd and MWr TLPs) that
are generated and sent over the PCI Express link and the respective completion TLPs that are
received in return.

The following features are supported as a master memory requester:

m Single outstanding NP (Non-Posted) request. Either memory read, 1/0 or Configuration
requests.

In Endpoint mode, up to four outstanding NP (Non-Posted) request
Maximum memory read request of 128 bytes

Maximum memory write request of 128 bytes

64-bit addressing

Master I/O Transactions

Master I/O transactions are 1/O space read and write requests (IORd and IOWr TLPs) that are
generated and sent over the PCI Express link and the respective completion TLPs that are received
in return.

The following features are supported as a master 1/O requester:

m Single outstanding NP (Non-Posted) request. Either memory read, 1/0 or Configuration
requests.

m In Endpoint mode, up to four outstanding NP (Non-Posted) request
m Maximum I/O read request of 4 bytes
m Maximum I/O write request of 4 bytes
m 32-bit addressing
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 40

Document Classification: Proprietary Information April 29, 2008, Preliminary

5.4

PCI Express Interface
Master Configuration Transactions

m Both I/O read requests and I/O write requests are Non-Posted requests.
EI The user must not initiate I/O requests that are larger than 4 bytes and cross 4
bytes address boundary. Such requests are illegal according to the PCI Express
Base 1.0a specifications.
Only partial I/O transactions are supported.
In Endpoint mode, only memory request generation is allowed by the PCI Express
Base 1.0a Specification. The user must not initiate 1/0 requests when working in
Endpoint mode.

Note

Master Configuration Transactions

Master Configuration transactions are Configuration space read and write requests (CfgRdO,
CfgWr0, CfgRd1 and CfgWrl TLPs) that are generated and sent over the PCI Express link and the
respective completion TLPs that are received in return.

The following features are supported as a master Configuration requester:

m Single outstanding NP (Non-Posted) request. Either memory read, 1/0O or Configuration
requests.

In Endpoint mode, up to four outstanding NP (Non-Posted) request

Maximum Configuration read request of 4 bytes

Maximum Configuration write request of 4 bytes

Extended register number support (4 KB extended PCI Express configuration header space)

requests.

In Endpoint mode, only memory request generation is allowed by the PCI Express
Base 1.0a Specification. User must not initiate Configuration requests when
working in Endpoint mode.

EI m Both Configuration read requests and Configuration write requests are Non-Posted

Note

54.1 Configuration Requests Generation

Configuration requests are generated by using the following PCI Express Configuration Requests

Generation Registers:

1. PCI Express Configuration Address Register (Table 149 p. 280)

2. PCI Express Configuration Data Register (Table 150 p. 280)

The following procedure is used for generating configuration cycles:

1. PCI Express Configuration Address Register (Table 149 p. 280)—Write the Target Bus, Device,
Function, Register and Extended Register Numbers fields, using <ConfigEn> bit[31] to enable
this mechanism.

2. PCI Express Configuration Data Register (Table 150 p. 280)—Read or write to generate a
respective read or write configuration request. The type of the request (type 0 or type 1) is set
according to the following rules:

* Typel request: generated if Target Bus Number Is different from the internal Bus Number.
* TypeO request: generated if Target Bus Number is same as the internal Bus Number, and the
Target Device Number is different from the internal Device Number.

The transmitted Configuration TLP includes the Target Bus, Device, Function and Register Numbers

as written to the PCI Express Configuration Address Register (Table 149 p. 280).

The Configuration request generation is enabled only when the <ConfigEn> bit is set.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 41

—

= 88F5182

M ARVELL® UserManual

5.5

5.5.1

5.6

5.7

5.8

Target Memory Transactions

Target Memory transactions are Memory space read and write requests (MRd, MWr TLPs) received
over the PCI Express link, and the respective completion TLPs generated and transmitted in return.
The following features are supported as a target Memory completer:

Reception of up to eight Memory read requests

Maximum received read request size of 4 KB

Maximum received write request of 128 bytes

Support of PCI Express access to all of the device’s internal registers

64-bit addressing

Three Memory BARs (64-bit), BARO is dedicated to internal register access

In Endpoint mode: Expansion ROM support

Special Cases
m Access attempts that fail address decoding (e.g., do no hit a memory BAR) are completed as
Unsupported Requests.

m MemWr accesses to reserved or not implemented registers are completed normally on the PCI
Express port, and the data is discarded.

m MemRd accesses to reserved or not implemented registers are completed normally on the PCI
Express port, and a CpID TLP with data value of 0 and SC (Successful Completion status) is
returned.

Target I/0O Transactions

Target I/O transactions are /O space read and write requests (IORd, IOWr TLPs) that are received
over the PCI Express link, and the respective completion TLPs that are generated and transmitted in
return.

Target I/O transactions are not supported and must not be generated by downstream device.

Target Configuration Transactions

Target Configuration transactions are Configuration space read and write requests (CfgRdO,
CfgWr0, CfgRd1 and CfgWrl TLPs) that are received over the PCI Express link, and the respective
completion TLPs that are generated and transmitted in return.

Target Configuration transactions are not supported and must not be generated by downstream
device.

In Endpoint mode, Target TypeO Configuration transactions are supported.

The following features are supported as a target Configuration completer:

m Reception of up to eight NP (Non-Posted) requests—either memory read or Configuration
requests

Maximum received Configuration read request size of 4 bytes
Maximum received Configuration write request of 4 bytes

Messages

PCI Express defines a new message space. Messages are used to replace legacy PCI side-band
signals such as interrupts, error signals, hot-plug signals etc. Messages are also is used to enable
new capabilities such as active power management, Slot Power Limit and others. The following
message groups are supported as a root-complex port.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 42

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 7: Supported Message Groups

Message Group

Interrupt Signaling

Power Management

Error Signaling

Hot Plug Signaling

Supported

Yes

No

Yes

No

Locked Transaction Support = No

PCI Express Interface
Messages

Action

A received Assert_INTx message is forwarded as an

interrupt to the CPU. Reception of a Deassert_INTx

message clears the relevant interrupt.

NOTE: Both INTA, INTB, INTC and INTD are
supported. (x = A, B, C or D)

A received Error message is forwarded as an
interrupt to the CPU.

Both Correctable, Non-fatal and Fatal error
messages are supported.

Slot Power Limit Support No
Vendor Specific Messages No
5.8.1 Messages in Endpoint Mode

The following message groups are supported in Endpoint mode::

Table 8: Supported Message Groups: Endpoint Mode

Message Group

Interrupt Signaling

Power Management

Error Signaling

Hot Plug Signaling

Supported

Yes

Yes

Yes

No

Locked Transaction Support = No

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Action

Interrupt assertion on internal interface is forwarded
as an Interrupt Assert message to the PCI Express
port. Interrupt de-assertion on internal interface is
forwarded as an Interrupt Deassert message to the
PCI Express port.

Both INTA, INTB, INTC and INTD are supported.

Received PME_Turn_Off message triggers the
relevant power management procedure. It is
acknowledged by a PME_TO_Ack message that is
generated and transmitted on the PCI Express port.
PM_Active_State_Nak and PM_PME messages are
not supported.

Error in the PCI Express port is forwarded as an Error
message to the PCI Express port.

Correctable, Non-fatal, and Fatal error messages are
supported.

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information Page 43

—

= 88F5182
M ARVELL® UserManual

Table 8: Supported Message Groups: Endpoint Mode (Continued)

Message Group Supported Action

Slot Power Limit Support Yes When Set_Slot_Power_Limit message is received,
the Slot Power Limit Configuration registers are
updated accordingly.

Vendor Specific Messages No

5.9 Locked Transactions

Locked transaction semantics are not supported. That includes MRdLK, CplLk and Unlock message.

5.10 Arbitration and Ordering

The arbitration scheme on both Tx and Rx directions are following the PCI Express ordering rules.
On each direction there are separate queues for posted, non-posted and completion TLPs. A simple
round-robin arbitration is performed on TLPs can be forwarded according the ordering rules.

5.11 PCIl Express Register Access

The following section described the PCI Express port internal registers access via the different
interfaces (PCI Express interface or internal interface) and via the different address spaces (Memory
or Configuration space).

511.1 Read Only Register Type

The Read Only (RO) registers have the following access permissions:
m RO registers can be only read via the PCI Express port. They cannot be written via it.

m Al RO registers that are not hardwired or driven by the design are read/write (RW) from the
internal bus.

m If enabled, all RO registers are RW through the direct memory mapping, see Section 5.11.2,
Configuration Header Mapping to Internal Address Space, on page 44.

5.11.2 Configuration Header Mapping to Internal Address Space

The configuration header is mapped to the internal address space as follows:
m All configuration header registers are mapped to the internal memory space.

m Direct memory access is controlled by the <CfgMapTo MemEn> bit in the PCI Express Control
Register (Table 174 p. 291). When enabled, access can be done either from the Mbus or from
the PCle port.

512 Hot Reset

Hot Reset is an in-band reset indication that can be sent from the root-complex downstream and
reset the PCI Express hierarchy. Use the following procedure to generate a hot reset:

1. Write to the <ConfMstr HotReset> bit[24] in the PCI Express Control Register
(Table 174 p. 291).

2. To check that Hot Reset has been completed, poll <DL_Down> bit[0] in the PCI Express Status
Register (Table 175 p. 292). When this bit is set, DL is down and Hot Reset has been
completed.

3. Clear the <conf_mstr_hot_reset> bit[24] in the PCI Express Control Register.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 44 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Express Interface
Error Handling

EI Root Complex registers are not reset by Hot Reset.

Note

5.13 Error Handling

5.13.1 Physical Layer Errors

Table 9 list the conditions that may cause a PHY layer Receive error.

Table 9: Physical Layer Error List

Error Name

Receiver Error

Conditions

PHY Overflow

PHY Underrun

PHY 8B/10B decode error
PHY Disparity Error

Severity: Correctable.

5.13.2 Data Link Layer Errors

Table 10 lists the Data Link layer errors.

Table 10: Data Link Layer Error List

Error Name

Bad TLP

Bad DLLP

Replay Timeout Error

REPLAY_NUM Rollover Error

Data Link Layer Protocol Error

Copyright © 2008 Marvell

Conditions

LCRC Error detected in received TLP.
Sequence number error detected in received TLP.

Severity: Correctable.

CRC Error detected in received DLLP.

Severity: Correctable.

Replay timer expired.

Severity: Correctable.

REPLAY_NUM rolled-over. Four consecutive replays were
transmitted.

Severity: Correctable.

Reception of an Ack with out of range ackNac_Seq_Num.
Severity: Fatal.

Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 45

—

= 88F5182
M ARVELL® UserManual

5.13.3 Transaction Layer Errors

Table 11 lists the Transaction layer errors.
Table 11: Transaction Layer Error List

Error Name Description

Flow Control Protocol Error DLLP receive timer expiration.
Default severity: Fatal.

Malformed TLP Received TLP with data payload size larger than the Maximum
Payload Size.
Received TLP with undefined Type and Fmt fields value.

Received TLP with length different than expected according to the
length, type, and TD (TLP Digest) field.

Received request with Address/Length combination crossing the
4-KB boundary.

Received Power management Set_Slot_Power, Unlock, INTx, and
error message with TC field not equal to 0 (TCO).

Default severity: Fatal.

Poisoned TLP Received. Poisoned TLP received.

Default severity: Non-Fatal.

ECRC Check Error ECRC Error detected in received TLP.
Default severity: Non-Fatal.

Unsupported Request Received unsupported TLP type (CfgWrl, CfgRd1, MrdLk).
Received unsupported message codes.
Failed address decoding on received TLP.

Received CfgWr0 or CfgRdO with function_number different than 0.
Received poisoned write request to internal register space.

Default severity: Non-Fatal.
NOTE: Reception of Vendor_Defined_Type_1 message is
discarded silently. It is not an error state.
Received UR Completion Received Cpl TLP with UR completion status.
Received CplLk or CpID with UR completion status.
Not a PCI Express error. Mapped to PCI status.
Completion Timeout Outstanding Non Posted request to PCI Express timeout has
expired.
Default severity: Non-Fatal.
Completer Abort Received read requests to the internal address space, with the
Length field different than 1 DWORD.
Default severity: Non-Fatal.

Received CA completion Received a Cpl with CA completion status
Not a PCI Express error. Mapped to PCI status.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 46 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Express Interface
Error Handling

Table 11: Transaction Layer Error List (Continued)

Error Name Description

Unexpected Completion Received unexpected completion TLP (Cpl or CpID). Completion
does not correspond to one of the outstanding NP requests.
Received CplLk or CpIDLk TLPs.

Default severity: Non-Fatal.

|:: | | Peer-to-peer traffic between the PCI Express port and the PCI port is supported only in
one direction at a time. Simultaneously forwarding of transactions from both ports is not

Note supported.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 47

—

= 88F5182
M ARVELL® UserManual

6 PCI Interface

6.1 Functional Description

The PCl interface runs up to 66 MHz. It supports a 32-bit bus operation. It also supports 64-bit
addressing.

It can act as host bridge, translating CPU transactions to PCI memory, I/0, and configuration cycles.
It can also act as PCI Endpoint, responding to host configuration cycles, and having access to all of
the device’s internal registers.

It also integrates a PCI bus arbiter, to support up to six masters.

6.2 PCIl Master Operation

The 88F5182 PCI master supports the following transactions:
Memory Read

Memory Write

Memory Read Line
Memory Read Multiple
Memory Write & Invalidate
1/0 Read

1/0 Write

Configuration Read
Configuration Write
Interrupt Acknowledge
Special Cycle

Dual Address Cycle

EI Only partial I/O transactions are supported.
Note

The master generates a Memory Write and Invalidate transaction if:

m The transaction accessing the PCI memory space requests a data transfer size equal to
multiples of the PCI cache line size, with all byte enables active.

m The transaction address is cache aligned.
m Memory Write and Invalidate Enable bit in the Configuration Command register is set

The master generates a Memory Read Line transaction if:

m The transaction accessing the PCI memory space requests a data transfer size equal to
multiples of the PCI cache line size.

m The transaction address is cache aligned.

A Memory Read Multiple transaction is carried out when the transaction accessing the PCI memory
space requests a data transfer that crosses the PCI cache line size boundary.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 48 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Master Operation

|§ | | The 88F5182 supports four cache line size values—4 words (16 bytes), 8 words (32
bytes), 16 words (64 bytes), and 32 words (128 bytes). Setting the cache line size to
Note any other value is treated as if cache line size is set to 0.

A Dual Address Cycle (DAC) transaction is carried out if the requested address is beyond 4 GB
(address bits [63:32] are not 0).

The 88F5182 PCI master performs configuration read/write cycles, Interrupt Acknowledge cycles, or
Special cycles using the Config Address and Config Data registers. For full details on generating
these transactions, see Section 6.4, PCI Master Configuration Cycles, on page 52.

The master contains 512 bytes of posted write data buffer and 512 bytes of read buffer. It can absorb
up to four 128 byte write transactions plus four 128 byte read transactions. The PCI master posted

write buffer in the 88F5182 permits the initiator to complete the write even if the PCI bus is busy. The
posted data is written to the target PCI device when the PCI bus becomes available. The read buffer
absorbs the incoming data from PCI. Read and Write buffers implementation guarantees that there
are no wait states inserted by the master.

EI PCI_IRDYn is never de-asserted in the middle of a transaction.
Note

6.2.1 PCIl Master Write Operation

On a write transaction, data from the initiator unit is first written to the master write buffer and then
driven on the PCI bus. The master does not need to wait for the write buffer to be full. It starts driving
data on the bus when the first data is written into the write buffer.

On consecutive write transactions, the transactions are placed into the queue. When the first
transaction is done, the master initiates the transaction for the next transaction in the queue.

The master supports combining memory writes. If combining is enabled through the PCI Command
register’s <MWrCom> bit [4], the master combines consecutive burst write transactions, if possible.
For combining memory writes to occur, the following conditions must exist:

m Combining is enabled through the PCI Command register's <MWrCom> bit.

m The start address of the second transaction matches the address of data n+1 of the first
transaction.

m While the first transaction is still in progress, the request for the new transaction occurs.

EI PCI write combining is not supported with cache line size of 4.
Note

m Fast back-to-back is enabled when bit [9], the <FastBTBEn> field in the PCI Status and
Command (Table 282 p. 345), is setto 1.

The first transaction is a write.
While the first transaction is still in progress, the new transaction request occurs.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 49

—

= 88F5182
M ARVELL® UserManual

6.2.2 PCI Master Read Operation

On a read transaction, when the initiator requests a PCI read access, the PCI master drives the
transaction on the bus (after gaining bus mastership). The returned data is written into the read
buffer. The PCI master drives the read data to the initiating unit as soon as the first data arrives from
the PCI bus. It can also be configured to only drive the data when the whole burst read is placed in
the read buffer via PCI Command register’s <MRdTrig> bit [6] (see Table 246 on page 329).

The master also supports combining read transactions. If combining is enabled through PCI
Command register’s <MRdCom> bit [5], the master combines consecutive burst read transactions.
For combining read transactions to occur, the following conditions must exist:

m Combining is enabled.

m The start address of the second transaction matches the address of data n+1 of the first
transaction.

m While the first transaction is still in progress, the request for the new transaction occurs.

|§ | | If the target cannot handle a long burst without wait states, combining read transactions
is not recommended since the 88F5182 holds the PCI bus for a long time without using
Note it
6.2.3 PCIl Master Transaction Termination

If there is no target response to the initiated transaction within four clock cycles (five clocks In the
case of a DAC transaction), the master issues a Master Abort event. The master de-asserts
PCI_FRAMERN and on the next cycle de-asserts PCI_IRDYn. Also, the Interrupt Cause register’s
<MMAbort> bit is set and an interrupt is generated, if not masked.

The master supports several types of target termination:
m Retry

m Disconnect

m Target Abort

If a target terminated a transaction with Retry, the 88F5182 master re-issues the transaction. In
default, the master retries a transaction until it is being served. To limit the number of retry attempts,
set the Retry Counter register to a desired count value. When the master reaches this count value, it
stops the retries, and a bit is set in the Interrupt Cause register.

|§ | | The 88F5182 master keeps retrying a transaction until it is served (or until Retry
Counter expires). If it has multiple pending transactions in it's queue, it will not start
Note serving a new transaction before the current retried transaction get to a completion.

If a target terminates a transaction with Disconnect, the master re-issues the transaction from the
point it was disconnected. For example, if the master attempts to burst eight 32-bit dwords starting at
address 0x18, and the target disconnects the transaction after the fifth data transfer, the master
re-issues the transaction with address 0x2C to burst the remaining three DWORDs.

If a target abnormally terminates a transaction with a Target Abort, the master does not attempt to
re-issue the transaction. A bit in the Interrupt Cause register is set and an interrupt is generated, if
not masked.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 50 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Bus Arbitration

6.3 PCIl Bus Arbitration

The 88F5182 supports both external arbiter or internal arbiter configuration through the PCI Arbiter
Control register’'s <EN> bit [31] (see Table 252 on page 333). If the bit is set to 1, the internal PCI
bus arbiter is enabled.

The internal PCI arbiter is by default disabled. If using the arbiter, pull-ups must be set

on all PCI_GNTn signals.
Note

6.3.1 PCI Master Bus Arbitration

Whenever there is a pending request for a PCI access, the PCI master requests bus ownership
through the PCI_REQn pin. As soon as the PCI master gains bus ownership (PCI_GNTn asserted),
it issues the transaction. If no additional pending transactions exist, it de-asserts PCl_REQn the
same cycle it asserts PCI_FRAMERN.

The 88F5182 implements the Latency Timer Configuration register, as defined in PCI specification.
The timer defines number of clock cycles starting from PClI_FRAMEn assertion that the master is
allowed to keep bus ownership, if not granted any more. If the Latency Timer is expired, and the
master is not granted (PCI_GNTn not asserted), the master terminates the transaction properly on
the next data transfer (PCI_TRDYn assertion). The master re-issues the transaction from the point it
was stopped, similar to the case of disconnect.

One exception is Memory Write and Invalidate command. In this case, the master quits the bus only
after next cache line boundary, as defined in PCI specification.

6.3.2 Internal PCI Arbiter

The 88F5182 internal PCI arbiter can handle up to six PCI masters.

All PCI_REQn inputs are sampled and all PCI_GNTn outputs are registered, thus the earliest
PCI_GNTn to a non parked master, is two cycles after PCI_REQn is asserted.

The PCI arbiters implement a fixed Round Robin (RR) arbitration mechanism. The PCI arbiter
performs a default parking on the last agent granted. To overcome problems that happen with some
PCI devices that do not handle parking properly, use the PCI Arbiter Control register’'s <PD> bits
[20:14] as an option to disable parking on a per PCI master basis (see Table 252 on page 333).

In addition to disabling parking to avoid issues with some problematic devices, disable
E parking on any unused request/grant pair. This avoids possible parking on non-existent

PCI masters. For example, if only three masters are connected to the arbiter, then
Note <pp> [6:4] must be set to 1.

The PCI arbiter also implement broken master detection. A master that requests the bus must
initiate a transaction (assert PCI_FRAMERN) as soon as its PClI_GNTn is asserted. If the master is
broken and does not initiate a PCI transaction, the PCI bus hangs permanently. To avoid this
condition, the internal PCI arbiter implements a programmable broken value counter. If the master
granted on the bus does not issue a transaction within the number of cycles specified in PCI Arbiter
Control register <BV> bits [6:3], the arbiter de-asserts PCI_GNTn from the broken master and grants
the bus to some other master.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 51

—

= 88F5182

M ARVELL® UserManual

6.4

PCI Master Configuration Cycles

The 88F5182 translates CPU read and write cycles into configuration cycles using the PCI
configuration mechanism #1 (per the PCI interface).

The 88F5182 contains two registers to support configuration accesses: PCI Configuration Address
(Table 272 p. 340) and PCI Configuration Data (Table 273 p. 340). The mechanism for accessing
configuration space is to write a value into the Configuration Address register that specifies the:

m PCI bus number

m Device number on the bus

m Function number within the 88F5182

m Configuration register within the device/function being accessed

A subsequent read or write to the Configuration Data register causes the 88F5182 to translate that
Configuration Address value to the requested cycle on the PCI bus. A CPU access to the
Configuration Data register blocks the CPU until the access on the PCI bus has been completed.
This to make sure that the software reads the configuration data after the PCI transaction has been
completed and to verify that the data is valid.

The PCI P2P Configuration register’s <BusNumber> bits [23:16] and <DevNumber> bits [28:24]
define the bus number to which the PCI interface of the 88F5182 is connected and the device
number on this bus. These fields affect the type of configuration access the PCI master generates.

If the <BusNumber> bits [23:16] in the PCI Configuration Address (Table 272 p. 340) register equals
the PCI P2P Configuration register <BusNumber> field, but the <DevNumber> fields do not match, a
TypeO access is performed. This type of access addresses a device attached to the local PCI bus.
The Configuration Address translation to the value driven on the PCI_AD bus during address phase
is shown in Figure 9.

Figure 9: PCI Type 0 Configuration Transaction Address Translation

31 30 24 23 16 15 1110 8 7 210
Reserved Bus Number Device Func. Register Number
Number | Number
31 P 1615 1110 y 8 7 Y 210
Only one ‘1’ according to PCI_AD 0x0 Func. Register Number 00
Number
Driving only one 1 on PCI_AD[31:16] allows easy generation of the PCI_IDSEL signal on board, by
connecting each of these AD lines to the appropriate PCI slot PCI_IDSEL signal through a resistor.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 52 Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 12 shows Device Number to IDSEL mapping.
Table 12: Device Number to IDSEL Mapping

Dev #

0x0

Ox1

0x2

0x3

0x4

0x5

0x6

ox7

0x8

0x9

0XA
0XB
0XC
0XD
OXE
OXF

0x10-0X1F

N

Note

PCI_AD[31:16]

0000.0000.0000.0001
0000.0000.0000.0010
0000.0000.0000.0100
0000.0000.0000.1000
0000.0000.0001.0000
0000.0000.0010.0000
0000.0000.0100.0000
0000.0000.1000.0000
0000.0001.0000.0000
0000.0010.0000.0000
0000.0100.0000.0000
0000.1000.0000.0000
0001.0000.0000.0000
0010.0000.0000.0000
0100.0000.0000.0000
1000.0000.0000.0000

0000.0000.0000.0000

PCI Interface
PCI Master Configuration Cycles

The 88F5182 performs address stepping for the PCI configuration cycles. Once
granted on the bus, it drives a valid address and command on PCI_AD and PCI_CBEn
respectively one cycle before asserting PCI_FRAMEnN.

If the PCI Configuration Address register’'s <BusNum> field does not match the PCI P2P

Configuration register’s <BusNum> field, a Typel access is performed. This access type addresses
a device attached to a remote PCI bus. In this case, the Register Number, Function Number, Device
Number, and Bus Number are copied directly from the Configuration Address register to the PCI_AD
bus, as shown in Figure 10.

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 53

®
I;% 88F5182

M ARVELL® UserManual

Figure 10: PCI Type 1 Configuration Transaction

6.5

31 30 24 23 16 15 11 10 8 7 21 0
Reserved Bus Number Device Func. Register Number
Number Number
Reserved Bus Number Device Func. Register Number | 01
Number Number

A special cycle is generated if all of the following apply:

m The <BusNum> field in the Configuration Address register equals the PCI P2P Configuration
register’s <BusNum> field.

m The <DevNum> field is Ox1F.

m The function number is 0x7.

m The register offset is 0xO.

The CPU accesses the 88F5182’s internal configuration registers when the <DevNum> and

<BusNum> fields in the Configuration Address register match the corresponding fields in the PCI
P2P Configuration register.

be set before the Configuration Data register is read or written. If this bit is not set, no
transaction is driven on the PCI bus. In the case of a write transaction, the data is lost.
In the case of a read transaction, a non-deterministic value is returned to the CPU.

EI The configuration enable bit (<ConfigEn>) in the Configuration Address register must

Note

PCI Target Address Decoding

The 88F5182 PCI target interface supports multiple address windows, each defined by the base and
size registers. Each window (except of the internal register windows) can decode up to 4 GB space.
Each window cannot cross this 4 GB space boundary.

All memory mapped BARs (Base Address Register) are 64-bit registers, supporting 64-bit
addressing. If the upper 32-bit of the BAR is set to 0, the BAR acts as a 32-bit BAR and the 88F5182
PCI slave only responds to a SAC transaction. If the BAR’s upper 32-bit value is other than O (i.e., it
allocates a window above the 4 GB address space), the slave responds only to DAC transactions.

The PCI slave responds to an address hit in the I/O BARs only if the configuration Command
register’s bit [0] (Target I/O Enable) is set to 1. It responds to an address hit in any of the other
BARs only if bit [1] of configuration Command register (Target Memory Enable) is set to 1.

To disable a specific BAR space, the 88F5182 includes a BAR Enable register—bit per BAR. Setting
a bit to 1 disables the corresponding BAR. A disabled BAR is treated as a reserved register (read
only 0). PCI access match to a disabled BAR is ignored and no PCI1_DEVSELn is asserted.

The PCI target interface also supports address remapping to any of the resources. This is especially
useful when one needs to reallocate some PCI address window to a different location in memory.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 54

Document Classification: Proprietary Information April 29, 2008, Preliminary

6.6

PCI Interface
PCI Access Protection

EI There are no size registers for the internal space BARs. They are fixed 1 MB in size.
Note

By default, the four DRAM BARs correspond to the four DRAM chip selects (CSOn BAR maps
DRAM M_CSn[0] bank, CS1n BAR maps DRAM M_CSn[1] bank and so on). This default setting can
be overridden via the DRAM BAR Bank Select register, allowing two different BARs to map the same
physical DRAM bank. For example, setting DRAM BAR Bank Select register’s <DB2> field to 0x0,
forcing CS2nBAR to map DRAM M_CSn[0] (in addition to CSOn BAR that also maps DRAM
M_CSn[0] bank).

This feature is especially useful when working with two PCI agents transferring data to each other
via the 88F5182 DRAM, with one device in Little Endian mode and the other in Big Endian mode.
The PCI Access Control registers enable different byte swapping per each PCl address space, while
the transactions eventually reach the same address in the target DRAM.

PCI Access Protection

The PCI slave interface supports configurable access control. It is possible to define up to six
address ranges to different configurations. Each region can be configured to control PCI slave:

m Write and access protection

m Byte swapping

m Maximum burst size

m Read prefetch

An address received from the PCl is compared against the Access Control registers. If an address
matches one of the access windows, the 88F5182 handles the transaction according to transaction
type and the attributes programmed in the Access Control Base Address registers.

Each region contains two protection bits:

Access protection Any PCl access to this region (read or write) is forbidden.

Write protection Any PCI write access to this region is forbidden.

This feature is useful for protection from software errors (PCl access to memory space that it is not

expected to access). If an access violation occurs:

m The PCI slave interface terminates the transaction with Target Abort.

m The transaction address is latched in the PCI Error Address (Low) register (see Table 278 on
page 343).

m The PCI <STAbort> bit in the interrupt cause register is set.

| ;] | The 88F5182 internal register space is not protected, even if the access protection

windows contain this space.
Note

The other attributes of the Access Control registers are discussed in Section 6.7, PCI Target
Operation, on page 56.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 55

—

= 88F5182
M ARVELL® UserManual

6.7 PCI Target Operation

The 88F5182 responds to the following PCI cycles as a target device:
Memory Read

Memory Write

Memory Read Line

Memory Read Multiple

Memory Write and Invalidate

1/0 Read

110 Write

Configuration Read

Configuration Write

DAC Cycles

The 88F5182 does not act as a target for Interrupt Acknowledge and Special cycles (these cycles

are ignored). The 88F5182 does not support Exclusive Accesses. It treats Locked transactions as
regular transactions (it does not support LOCKn pin).

The slave consists of 512 bytes of posted write data buffer that can absorb up to four 128 byte write
transactions (or a long burst write of 512 bytes), and four read prefetch buffers, 256 bytes each, to
support up to four delayed reads.

6.7.1 PCIl Posted Write Operation

Except for configuration writes, all PCI writes are posted. Data is first written into the posted write
buffer and later written to the target device.

The slave supports unlimited burst writes. The write logic separates the long PCI bursts to fixed
length bursts towards the target device. Program the internal burst length to four, eight, or 16
QWORDs through PCI Access Control Base 0 (Low) register's <WrMBurst> bits [9:8]. Whenever
this burst limit is reached, the slave generates a write transaction toward the target device, while
continuing to absorb incoming data from the PCI. The PCI burst writes have no wait states
(PCIL_TRDYn is never de-asserted). If the slave transaction queue is full, a new write transaction is
retried (or if it becomes full during a long burst write, the burst is disconnected).

The slave posting writes logic also aligns bursts that do not start on a 32-/64-/128-byte boundary,
depending on the burst setting, for more efficient processing by the target units. For example, if
<WrMBurst> is set to maximum bursts of eight QWORDS, and a PCI long burst write transaction
starts at address 0x18, the slave issues a write transaction of five QWORDS to the target unit and
continues with a new transaction to address 0x40.

m Ifthe PCl address does not match any of the PCI Access Control registers address
EI windows, the PCI slave acts as if <WrMBurst> is programmed to 32-bytes.
The PCI specification defines that I/O writes must not be treated as posted
transactions. The slave does not meet this requirement.

6.7.2 PCI Non-Posted Writes

PCI configuration writes are non-posted. The slave asserts PCI_TRDYn only when data is actually
written to the configuration register. This implementation guarantees that there is never a race
condition between the PCI transaction changing address mapping (Base Address registers) and the
following transactions.

Note

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 56 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Target Operation

there may be a race condition, if these registers are set from PCI (e.g. changing a size
register and then accessing the window defined by this window). To prevent race

Note conditions such as these, it is recommended to follow the write transaction with a read
transaction to the same register, to guarantee that it is updated.

6.7.3 PCIl Read Operation

PCI read access suffers from the following limitations:

m There is no way for the target device to know in advance the amount of data required, thus it
needs to speculate how much data to prefetch from the target interface.

m Read accesses from high latency interface typically result in many dead cycles on the PCI bus.
The PCI master is waiting for the read data to return. This results in low bus utilization.

EI A PCI write to any of the 88F5182 internal registers is treated as a posted write, i.e.,

The 88F5182 PCI slave design, is targeted to solve these basic limitations by:

m User defined typical burst read size per address window. This allows the slave to prefetch the
amount of data required by the initiating master.

m Allreads are handled as delayed transactions. This enables better bus utilization, in the case of
multiple masters.

There are two fields in the PCI Access Control Base 0 (Low) register that affect the slave read
behavior—<RdMBurst> bits [9:8] and <RdSize> bits [11:10]. <RdMBurst> defines the maximum
burst size the slave requests from the target interface. This parameter is mainly used for bandwidth
and latency considerations on the target interface. <RdSize> defines the typical amount of read data
required. The slave prefetch data from the target interface is based on the <RdSize> setting. If for
example, <RdMBurst> defines maximum burst of 64 bytes and <RdSize> defines typical burst of
256 bytes, the slave generates four 64-byte read transactions toward the target interface, to prefetch
the 256 bytes.

There is one exception to the above prefetch scheme. This exception is a read with PCI_FRAMEn
assertion for a single cycle. This kind of transaction implies that the master initiating the transaction
requires only a single data. In this case, the slave requests only a single data from the target
interface.

| ;] | If the PCI address does not match any of PCI Access Control register’s address

Not windows, the slave acts as if both <RdMBurst> and <RdSize> are set to 32 bytes.
ote

The slave supports up to four pending delayed reads. Upon receiving a read transaction, the slave
issues a PCI_STOPn immediately (retry termination) but, internally, continues the transaction
towards the target interface, prefetching the required amount of data as previously explained. When
the data is received from the target, it is written to one of the four read buffers. When the data is
ready in the read buffers, a retry of the original transaction results in data driven immediately on the
PCI bus. Any attempt to retry the original transaction before the entire data amount is placed in the
slave read buffers results in a PCI_STOPnN issued by the slave.

If a PClI read transaction is still alive (implying that a longer burst is required) by the time all the burst
data is driven on the PCI bus, the slave terminates the transaction with a disconnect.

The slave handles a queue of available free read buffers. With each incoming read transaction, the
slave allocates a new read buffer. The read buffer is used storing the read data coming from the
target interface. If all four read buffers are full when the slave receives a new read transaction, the
incoming read transaction is terminated with RETRY.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 57

—

= 88F5182
M ARVELL® UserManual

To prevent dead locks due to “stuck” buffers (delayed reads that are never completed), the 88F5182
supports a programmable PCI Discard Timer register (see Table 250 on page 333). Each read buffer
has its timer initialized to the Discard Timer value. Once a buffer is valid, the buffer timer starts
counting down. If the buffer timer reaches 0 before being accessed (no delayed read completion),
the buffer is invalidated. Setting the Discard Timer register to O prevents the slave from invalidating
read buffers.

6.7.4 Aggressive Prefetch

The read operation described above is efficient for transfers of small data payloads (up to 256
bytes). It also efficient for a system with multiple PCI masters interfacing the 88F5182 PCl slave. In
such configurations, the multiple delayed reads support can achieve high PCI bus bandwidth.

However, when a single PCI master is interfacing the 88F5182 PCI slave, and this master typically
reads big data payloads, a more aggressive read prefetch mechanism is required. Each of the PCI
access windows can be marked as aggressive read prefetch via PCl Access Control Base 0 (Low)
register’s <Aggr> bit [10], see Table 254 on page 334. If set to 1, the <RdSize> field is ignored, and
the PCI slave treats any read that hits that window with the aggressive prefetch policy.

Aggressive prefetch works as follows:
1. The PCI slave terminates the transaction with RETRY.

2. Itthen prefetches between 132 bytes and 256 bytes, depending on the address alignment from
the target unit.

3. The PCI slave starts driving data on the bus depending on the PCI Access Control Base 0
(Low) register’'s <AggrWM1> bit [4] setting (see Table 254 on page 334).

4. When the PCI slave starts driving the first 256 bytes on the bus, it prefetches an additional 256
bytes from the target. When the second 256 bytes begins to be driven on the bus, the PCI slave
prefetches another 256 bytes and so on. With each 256 bytes it drives on the bus, it prefetches
an additional 256 bytes from the target.

5. The slave continues this prefetch loop as long as the requesting PCI master keeps requesting
data (PCI_FRAMERN signal is kept asserted). Once the master is satisfied and de-asserts
PCI_FRAMER, the slave no longer prefetches data. It discards redundant data that was already
prefetched, but not consumed by the master.

With this aggressive prefetch mechanism, the 88F5182 can deliver a high throughput stream of read
data to the PCI masters, with no disconnects in the middle. However, if the target unit is heavily
loaded, and cannot meet the PCI bandwidth, the PCI slave terminates the burst read with
DISCONNECT. While internally, it keeps prefetching an additional 256 byte of data, so by the time
the master re-issues the transaction, the slave can serve it again.

|:: | | In the case of a DISCONNECT, the PCI master is expected to re-issue the transaction
from the point it was stopped. If the master will not meet this requirement, the PCI slave
Note will hang, and is only released when the Discard Timer expires.

To reduce the chances for DISCONNECT, configure the PCI slave to drive read data on the PCI
when it has 512 bytes available, instead of 256 bytes. Set Access Control Size register’s
<AggrWwM1> bit [4] to 1, to make this change.

Aggressive prefetch by its nature, introduces some performance penalty on the target unit. This
mode is likely to prefetch more data than really needed, thus wasting target unit bandwidth. This is
especially true, when the requesting PCI master has variable sized requests. It sometimes requests
big data payloads (e.g., data buffers) and sometimes small (e.g., descriptors). If the aggressive
prefetch is constantly active, it implies that there is a waste of target unit bandwidth whenever the
master request a small data payload.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 58 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Target Operation

To solve this conflict, place the small data structures and the big data structures in different
locations, corresponding to different access windows. This way it is possible to set one access
window to aggressive prefetch enabled, and the other window to non-aggressive prefetch policy.

If this solution is not possible, the 88F5182 PCI slave offers an alternative via the <AggrwM2> bits
[7:5] of the Access Control Size register. This field determines the watermark upon which the PCI
slave accesses the target unit and prefetches the next buffer. By default, it prefetches the next buffer
with the first data it drives on the bus. However, it can be configured to any other value. For example,
if the requesting PCI master reads from time to time 32-byte data payloads, it is advised to set
<AggrWwM2> to 0x4. This way the slave will not prefetch the next buffer from the target unit upon this
descriptor read, since the read will be completed on the PCI bus, before this watermark is exceeded.

Aggressive prefetch is useful when interfacing with a single PCI master. If activating
EI this mode while having multiple masters on the bus (meaning, multiple outstanding
read requests), the slave will serve only one master at a time. Meaning, once serving
Note one aggressive prefetch request, any other read request is terminated with RETRY,
and discarded. Also, new write requests are terminated with RETRY until the
aggressive prefetch completes.

6.7.5 Non-Prefetchable Reads

The PCI specification allows a BAR space to be defined as non-prefetchable.

The PCl target device must guarantee that a read access to a non-prefetchable address space is not
destructive (or as the PCI specification defines a prefetch from this memory space might cause “side
effects”). An example of such memory space could be a FIFO device in which speculative reads are
destructive.

If a PCI read access matches a non-prefetchable BAR (bit [3] of the BAR is 0), the 88F5182 PCI
slave treats this read access as a hon-prefetchable read, regardless of the attributes defined in the
PCI access registers. It treats it as a delayed read of a single data.

During non-prefetchable read transactions, the PCI slave requests a single 64-bit word from the
target interface with the required byte enables, thus guarantees there is no destructive read. This is
in contrast to prefetchable reads in which the 88F5182 prefetches at least 4/8/16 QWORDS from the
target interface, ignoring byte enables.

Upon the delayed read completion, if the initiating master requests more than a single data, the
88F5182 PCI slave disconnects this burst attempt.

The PCI reads from the internal and configuration registers of the 88F5182 are also treated as
non-prefetchable reads.

6.7.6 PCI Target Transaction Termination

The 88F5182 PCI slave supports the three types of target termination events described in the PCI
specification—Target Abort, Retry, and Disconnect.

Target Abort is activated in the following cases:

m /O transaction with address bits [1:0] is not consistent with byte enables.

m Address parity error.

m Violation of PCI access protection setting.

| |

Slave accessed and the address match two or more BARs (result of BAD programming of the
BAR registers).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 59

®
I;% 88F5182

M ARVELL® UserManual

6.8

6.9

6.10

In any of these cases:

m The PCI slave interface terminates the transaction with Target Abort.
m The transaction address is latched in PCI Error Address register.

m The PCI STAbort bit in the interrupt cause register is set.

The slave generates a RETRY termination in the following cases:

m Delayed reads (first attempt, or completion attempt while read data is not ready yet).
m A new write transaction while write buffer is full.

m A new read transaction while read buffer is full.
n

Retry enable feature is active (see the retry initialization section in the 88F5182 Feroceon
Storage Networking SoC Datasheet

m Non posted write (configuration write) while the write buffer is not empty.

®

The slave generates a DISCONNECT termination in the following cases:

m Burst access with start address bits [1:0] different than ‘00.

Burst access that reaches BAR boundary.

Write buffer becomes full during a burst write.

Burst access to internal registers.

Delayed read completion is not satisfied with the amount of data prefetched by the PCI slave

64-bit Addressing

The PCI master and slave support 64-bit addressing cycles.

If the PCI master is accessed with an address higher than 4 GB (i.e., the upper 32-bit address is not
0), the master initiates a DAC transaction. This means the transaction address phase takes two
clock cycles.

On the first cycle, the master drives a ‘1101’ value on PCI_CBERN[3:0] and the lower 32-bit address
on PCI_AD[31:0]. On the next cycle it drives the required command on PCI_CBEN[3:0] and the
upper 32-bit address on PCI_AD[31:0].

On a DAC transaction, target address decode time is one cycle longer than in SAC transactions.
Thus, the master issues a master abort on a DAC transaction only after five clock cycles, rather than
four clocks in the case of SAC.

As a target, the 88F5182 responds to DAC transactions if the address matches one of its 64-bit
BARs. In this case, the slave starts address decoding only after the second clock cycle (when the
whole 64-bit address is available). This implies that PCI_DEVSELn is asserted three clock cycles
after PCI_FRAMERN rather than after two clock cycles as in SAC transactions.

PCI Parity and Error Support

The 88F5182 implements all parity features required by the PCI specification, including PCI_PAR,
PCI_PERRnN, and PCI_SERRnN generation and checking.

The PCl interface also supports other error conditions indications, such as access violation and
illegal PCI bus behavior, see Section 6.6, PCI Access Protection, on page 55 and Section 6.7.6, PCI
Target Transaction Termination, on page 59 for more details.

Configuration Space

The 88F5182 PCI interface supports Type 00 configuration space header as defined in PCI
specification. The 88F5182 is a multi-function device. It supports functions 0 to 4 and the header is
implemented in all of these five functions as shown in Figure 11 and Figure 12. The configuration
space is accessible from the CPU or PCI buses.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 60

Document Classification: Proprietary Information April 29, 2008, Preliminary

6.10.1

Copyright © 2008 Marvell
April 29, 2008, Preliminary

PCI Interface
Configuration Space

The 88F5182 PCI slave responds to a type 0 PCI configuration transactions, if IDSEL is active and if
the function number is between 0-4. The slave does not respond to configuration access to
functions 5-7.

Many of functions 1-4 registers are aliased to function 0 registers. For example, access to Vendor
ID register in function 1 actually accesses Vendor ID register of function 0.

Plug and Play Base Address Registers Sizing

Systems adhering to the plug and play configuration standard determine the size of a Base Address
register’s decode range by first writing OXFFFF.FFFF to the BAR, then reading back the value
contained in the BAR. Any bits that were unchanged (i.e., read back a zero) indicate that they cannot
be set and are not part of the address comparison. With this information the size of the decode
region can be determined.

The 88F5182 responds to BAR sizing requests based on the values programmed into the Bank Size
Registers. Whenever a BAR is being read, the returned data is the BAR’s value masked by its
corresponding size register.

Figure 11: PCI Configuration Space Header

Function 0 Header Function 1 Header

Device ID Vendor ID 00h 00h
Status Command 04h 04h
Class Code Rev ID | ogh 08h

BIST | Header | Latency | LineSize | och \ \ 0Ch
BAR (mem) 10h BAR (mem) 10h

14h 14h

BAR (mem) 18h BAR (mem) 18h

1Ch 1Ch

BAR (mem) 20h Reserved 20h

24h 24h

Reserved 28h Reserved 28h

Subsystem ID | Subsystem Vendor ID 2Ch | 2Ch
Expansion ROM BAR 30h Reserved 30h
Reserved ‘ Cap. Ptr 34h Reserved ‘ Reserved | 34h
Reserved 38h Reserved 38h

Max_Lat | Min Gnt | Int. Pin | Int. Line | 3Ch \ \ \ 3Ch

Function 2 Header Function 3 Header

00h 00h

04h 04h

08h 08h

\ \ 0Ch \ \ 0Ch
BAR (mem) 10h Reserved 10h

14h 14h

BAR (mem) 18h BAR (mem) 18h
1Ch 1Ch

BAR (mem) 20h Reserved 20h

24h 24h

Reserved 28h Reserved 28h

2Ch \ 2Ch

Reserved 30h Reserved 30h
Reserved | Reserved | 34h Reserved | Reserved | 34h
Reserved 38h Reserved 38h

\ \ \ 3Ch \ \ \ 3Ch

Read Only 0
|:| Aliased to function O register

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 61

®
I;% 88F5182

M ARVELL®

6.11

User Manual

Figure 12: PCI Configuration Space Header (Continued)

Function 4 Header

BAR (mem)

Reserved

BAR (I/0)

BAR (1/0)

Reserved

Reserved

Reserved | Reserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

PCI Add-In Card (Endpoint) Special Features

The 88F5182 supports the following special PCl features:
m Built-In Self Test (BIST)

Note

Vital Product Data (VPD)
Message Signaled Interrupt (MSI)
Power Management (PMG)
Compact PCI Hot Swap

These features are useful when using the 88F5182 on a PCI add-in card. They are not

relevant when using the 88F5182 as the system host.

The VPD, MSI, PMG, and Hot Swap features are configured through the Capability List, as shown in

Figure 13.

Doc. No. MV-S103345-01 Rev. C

Page 62

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

PCI Interface

PCI Add-In Card (Endpoint) Special Features

Figure 13: 88F5182 Capability List

Function 0 Header

Power Management
Capability

VPD Capability

MSI Capability

CompactPCI
Hot-Swap Capability

6.11.1 Power Management

Device ID Vendor ID
Status Command
Class Code Rev ID
BIST Header ‘ Latency Line Size
BAR (mem)
BAR (mem)
BAR (mem)
Reserved

Subsystem ID ‘ Subsystem Vendor ID

Expansion ROM BAR

Reserved ‘ Cap. Ptr._|
Reserved
Max_Lat Min_Gnt Int. Pin ‘ Int. Line
PMC NextPtr. | Cap.ID
Data BSR PMCSR

F| VPD Address Next Ptr. Cap. ID

VPD Data

Message Control ‘ Next Ptr. Cap. ID

Message Address

Message Upper Address

‘ Message Data

‘ Reserved

HSCSR | Null Ptr.

Cap.D P

The 88F5182 implements the required configuration registers defined by the PCI specification for
supporting system Power Management as well as the PCI_PMERn pin. This implementation is fully

compliant with the specification.

| ;I | For full details on system Power Management implementation, see the PCI

specification.
Note

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information

Page 63

—

= 88F5182

M ARVELL® UserManual

The Power Management capability structure consists of the following fields:

m Capability structure ID. The ID of PMG capability is 0x1.

m Pointer to next capability structure.

m Power Management Capability.

m Power Management Status and Control.

Power management registers are accessible from the CPU or PCI. Whenever PCI configuration
cycle updates Power State bits (<PState>bits [1:0] of the PCI Power Management Control and

Status (Table 296 p. 350), the PM interrupt bit of the PCI Interrupt Cause (Table 276 p. 342) is set
and an interrupt to the CPU is generated, if not masked by interrupt mask registers.

PCI_PMEn is an open drain output. When the CPU sets <PME_Status> bit to 1 in the PMCSR
register, the 88F5182 asserts PCI_PMERn. It keeps asserting PCI_PMEn as long as the bit is set, and
the <PME_En> bit is set to 1 in the PMCSR register. The PCI clears the <PME_Status> by writing 1,
causing the de-assertion of PCI_PMEn.

PMEON and PME1n pins are multiplexed on the MPP pins. If PCI_PMEn support is required, first
program the MPP pins to the appropriate configuration. (See the Multi Purpose Pins Multiplexing
section in the 88F5182 Feroceon® Storage Networking SoC Datasheet).

| ;I | The 88F5182 does not support its own power down. It only supports a software

Not capability to power down the CPU or other on board devices.
ote

The PCI Power Management specification requires that a device configured to D1, D2, or D3 state,
meet the following:

m The device does not respond to any PCI access other than configuration transactions.

m The device does not initiate transactions as a master. The 88F5182 software drivers must
disable all internal DMAs so it can meet this requirement.

m Will not generate interrupts. The 88F5182 software drivers must mask PCI interrupts to meet
this requirement.

When the state is changed from D3 back to DO, the device changes to the uninitialized state:

m Configuration registers are set to their initial values.

= Output buffers are not driven.

6.11.2 Vital Product Data (VPD)

VPD is information that uniquely identifies hardware elements of a system. VPD provides the system

with information such as part number, serial number or any other information.

The PCI specification defines a method of accessing VPD. The 88F5182 VPD implementation is

fully compliant with the specification. For full details on the VPD's structure, see the PCI

specification.

The VPD's capability structure consists of the following fields:

m Capability structure ID. The ID of VPD capability is Ox3.

m Pointer to next capability structure.

m VPD Address. The 15-bit address of the accessed VPD structure.

m Flag. Used to indicate data transfer between VPD Data register and memory.

m VPD Data. The 32-bit VPD data written to memory or read from memory.

The 88F5182 supports a VPD located in function the 2 BARO space. PCI access to this VPD results

in access to this space. Although the PCI specification defines the address to be accessed, as the

VPD Address field in the VPD capability list item (15-bit address), the 88F5182 supports remapping
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 64 Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Add-In Card (Endpoint) Special Features

of the 17 high bits by setting the <VPDHighAddr> bits [24:8] in the PCI Address Decode Control
(Table 243 p. 326) register to the required address.

For PCI VPD write, the PCI write VPD data first, then writes the VPD address with Flag bit set to 1.
As a response, the slave writes the VPD data to the VPD device to the required address and clears
the Flag bit as soon as the write is done.

For a PCI VPD read, the PCI writes VPD address with the Flag bit set to 0. As a response, the slave
reads the VPD device from the required address, places the data in the VPD data field, and sets the
Flag bit to 1. The VPD read is treated as a non-prefetched nor delayed read transaction.

6.11.3 Message Signaled Interrupt (MSI)

|:: | | The MSI feature is useful for the 88F5182 to generate interrupt messages to the system
host. There is no special logic for detecting MSI messages driven by external PCI
Note devices to the local CPU.

The MSI feature enables a device to request an interrupt service without using interrupts. The device
requests a service by writing a system specified message to a system specified address. The
system software initializes the message destination and message during device configuration. The
88F5182 MSI implementation is fully compliant with the PCI specification. It supports a single
interrupt message.

The MSI capability structure consists of the following fields:

Capability structure ID: ID of MSI capability is 0x5

Pointer to next capability structure

Message Control

Message Address: 32-bit message low address

Message Upper Address: 32-bit message high address

m Message data: 15-bit of message data

Message Control word consists of the following fields in the PCI MSI Message Control

(Table 299 p. 352):

m Bit [0]—MSI Enable. If set to 1, MSI is enabled, and the 88F5182 drives interrupt messages
rather than asserting the PCI PCI_INTn pin.

m Bits [3:1]—Multiple Message Capable. Defines the number of DIFFERENT MSI messages the
88F5182 can drive.

m Bits [6:4]—Multiple Message Enable. Defines the number of DIFFERENT MSI messages the
system allocates for the 88F5182.

m Bit [7]—64-bit address capable. Enables 64-bit addressing messages.

As soon as the PCI enables MSI (sets the <MSIEn> bit [16]), 88F5182 no longer asserts interrupts
on the PCI bus. Instead, the PCI master drives a memory write transaction on the PCI bus, with
address as specified in Message Address field and data as specified in the Message Data field.

If the Message Upper Address field is set to 0, the master drives a DWORD write, else it drives a
DAC DWORD write.

Unlike the PCI PCI_INTn, a level sensitive interrupt that is active as long as there are active
non-masked interrupts bits set, MSI is an edge like interrupt. However, to prevent the PCI interrupt
handler from missing any new interrupt events, the 88F5182 continues to drive new MSI messages
as long as pending, non-masked interrupts exist.

The <Timer>bit [15:0] of the MSI Trigger Timer (Table 251 p. 333) register defines the time gap
(TCLK cycles) between sequential MSI requests. A timer starts counting with each new MSI request.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 65

—

= 88F5182

M ARVELL® UserManual

If it reaches 0 and there is still a pending non-masked interrupt, a new MSI request is triggered. If the
PCl interrupt handler clears one of the Interrupt Cause register bits, and there is still a pending
interrupt, the 88F5182 immediately issues a new MSI without waiting for the timeout to expire.

Setting the MSI Trigger Timer register to O disables the timer functionality (as if it was programmed
to infinity). In this case, the PCI interrupt handler must confirm that there are no interrupt event is
missed.

6.11.4 CompactPCI Hot Swap

The 88F5182 is CompactPCl Hot Swap ready compliant. It implements the required configuration

registers defined by CompactPCIl Hot Swap specification as well as three required pins.

The CompactPCI Hot Swap capability structure consists of the following fields:

m Capability structure ID. The ID of HS capability is 0x6.

m Pointer to next capability structure.

m Hot Swap Status and Control.

Hot Swap Status and Control register (HS_CSR) is accessible from both CPU and PCI. This

register’s bits give status of board insertion/extraction as defined in the specification.

HS_CSR bhits are:

= EIM: PCI_ENUMnN Interrupt Mask. If set to 1, the 88F5182 does not assert a PCI_ENUMn
interrupt.

m LOO: LED On/Off. If setto 1 LED is on.

= REM: Removal. Indicates board is about to be extracted.

m INS: Insertion. Indicates board has been inserted.

The 88F5182 device supports three Hot Swap ready required pins.

m PCI_HS: Handle Switch input pin. Indicates insertion or extraction of board. A 0 value indicates
the handle is open.
PCI_LED: LED control output pin. A 1 value activates the on board LED.
PCI_ENUMNR: Open drain output. Asserted upon board insertion or extraction (if not masked by
EIM bit).

Board extraction consists of the following steps:

1. The operator opens board ejector handle. As a result, PCI_HS goes LOW, indicating board is
about to be extracted.

2. As aresult, the REM bit is set and the PCI_ENUMnN pin is asserted, if not masked by EIM bit.

3. The System Hot Swap software detects PCI_ENUMn assertion. Checks the REM bits in all Hot
Swap compliant boards. Identifies the board about to be extracted and clears the REM bit (by
writing a 1 value).

4. The 88F5182 acknowledges the system software by stop asserting the PCI_ENUMn pin.

5. The Hot Swap software might re-configure the rest of the boards, and when ready, it sets the
LOO bit, indicating board is allowed to be removed.

6. As aresult, 88F5182 drive PCI_LED pin to 1, the on board LED is turned on indicating that the
operator may remove the board.

Board insertion consists of the following steps:

Board is inserted. It is powered from Early Power and its reset is asserted from Local PCI

PCI_RSTn. The on board LED is turned on by the hardware (not as a result of LOO bit state).

1. Local PCI PCI_RSTn is de-asserted, causing the LED to turn off, indicating that the operator
may lock the ejector handle.

2. The operator locks the handle. As a result, PCI_HS goes HIGH, indicating the board is inserted
and locked.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 66

Document Classification: Proprietary Information April 29, 2008, Preliminary

PCI Interface
PCI Add-In Card (Endpoint) Special Features

3. Asaresult, the INS bit is set and PCI_ENUMn is asserted, notifying the Hot Swap software that
a board has been inserted.

4. System Hot Swap software detects PCI_ENUMn assertion, checks the INS bits in all Hot Swap
compliant boards, identifies the inserted board and clears the INS bit (by writing a value of 1).

5. 88F5182 acknowledges system software by stopping to assert the PCI_ENUMN pin. Now the
software may re-configure all the boards.

| ;I | For full details about the Hot Swap process and board requirements, see the

CompactPCI Hot Swap specification.
Note

In addition, the 88F5182 supports the following Hot Swap device requirements:

m All PCI outputs floats when PCI_RSTn is asserted.

m All 88F5182 PCI state machines are kept in their idle state while PCI_RSTn is asserted.

m The 88F5182 PCI interface maintains its idle state until the PCI bus is in an IDLE state. If reset

is de-asserted in the middle of a PCI transaction, the PCI interface stays in its idle state until the
PCI bus is back in idle.

m The 88F5182 has no assumptions on clock behavior prior to its setup to the rising edge of
PCI_RSTn.
The 88F5182 is tolerant of the 1V pre-charge voltage during insertion.
The 88F5182 can be powered from Early VDD.

6.11.5 Built-In Self Test (BIST)

The 88F5182 supports BIST functionality as defined by the PCI specification. It does not run its own
self test. Instead, it enables the PCI to trigger CPU software self test.

The PCI BIST, Header Type/Initial Value, Latency Timer, and Cache Line (Table 284 p. 346) register

is located at offset 0xOC of Function 0 configuration header. It consists of the following fields:

m <BISTCap> bit (bit [31]). If BIST is enabled through reset initialization, it is set to 1. This bit is
read only from the PCI.

m <BISTAct> bit (bit [30]). Set to 1 by the PCI to trigger CPU software self test. Cleared by the
CPU upon test finish.

m <BISTComp> (bits [27:24]). Written by the self test software upon test finish. Any value other
than O stands for test fail.

Upon PCI triggering of BIST (writing 1 to bit [31]), the CPU interrupt is asserted (if not masked) and
the CPU must run the system self test. When the test is completed, the CPU must clear bit [6] and
write the completion code.

The PCI specification requires that BIST be completed in two seconds. It is the BIST software
responsibility to meet this requirement. If bit [31] is not cleared within two seconds, the PCI BIOS
may treat it as a BIST failure.

| ;| | The 88F5182 does not runs its own self test. The BIST register implementation is just a

Note software hook for the CPU to run a system self test.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 67

—

= 88F5182
M ARVELL® UserManual

6.11.6 Expansion ROM

With the Expansion ROM enabled through PCI Mode (Table 247 p. 331), the 88F5182 configuration
space includes an expansion ROM BAR at offset 0x30 of functionO configuration space as specified
in the PCI specification. Like the other BARs, there are expansion ROM size and remap registers.
Address decoding is done the same way as for the other devices. A hit in the expansion ROM BAR
results in an access to function 2 BARO space.

EI Expansion ROM size must not exceed function 2 BARO size.
Note

With the Expansion ROM disabled, the 88F5182 does not support expansion ROM BAR; offset 0x30
in the configuration space is reserved.

If using expansion ROM, the <ExpROMERN> bit [0] of the PCI Expansion ROM Base Address
Register (Table 292 p. 349) must be set to 1 (via the local processor or serial ROM initialization),
prior to BIOS access to the device. For the PCI slave to respond to a PCl address hit in the
expansion ROM space, the system software must set bit [1], the <MEMEn> field in the PCI Status
and Command (Table 282 p. 344) to 1 and <ExpROMEN> bit [0] of PCI Expansion ROM Base
Address Register to 1, as defined in PCI specification.

6.12 PCI Clocking

The 66 MHz PCI AC specification requires a 6 ns output delay for all PCI signals. To meet this
requirement, the 88F5182 PCI interface uses an internal DLL.

The PCI specification permits using a DLL only when interfacing a 66 MHz PCI bus. The 88F5182
samples the PCI_M66EN pin on reset de-assertion to determine if it is connected to a 66 MHz bus. If
the PCI_MB66EN pin is sampled low, it means that it is interfacing with a 33 MHz bus. The PCI
interface DLL is bypassed, and the 88F5182 meets the AC requirements of a 33 MHz PCI bus.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 68 Document Classification: Proprietary Information April 29, 2008, Preliminary

SATA Il Interface

7 SATA Il Interface

This section provides technical information about the Serial-ATA (SATA) Il interface.

Based on the Marvell® SATA host controllers (SATAHC) and SATA proven technology, the 88F5182
is fully compatible with SATA Il phase 1.0 specification (Extension to SATA | specification).

The 88F5182 employs the latest SATA Il PHY technology, with 3.0 Gbps (Gen2i) and is backwards
compatible with 1.5 Gbps (Genli) SATA I.

The Marvell 88F5182 SATA Il PHY has the following features:

SATA 1l 3 Gb/s speed

Backwards compatible with SATA | PHYs and devices

Support Spread Spectrum Clocking (SSC)

Programmable PHY for industry leading backplane drive capability
SATA 1l power management compliant

SATA Il Device Hot-Swap compliant

Low power consumption — Less than 200 mW per SATA Il PHY
PHY isolation Debug mode

The SATA Il interface supports the following protocols:

Non Data type command

PIO read command

P1O write command

DMA read command

DMA write command

Queued DMA read command
Queued DMA write command
Read FPDMAQueued command
Write FPDMAQueued command

The SATA Il interface does not support the following protocols:

Copyright © 2008 Marvell
April 29, 2008, Preliminary

ATAPI (Packet) command
CFA commands

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 69

—
=
—

M ARVELL®

88F5182
User Manual

8 Serial-ATA Il Host Controller (SATAHC)

The 88F5182 incorporates a Serial-ATA (SATA) host controller (SATAHC) integrating two
independent SATA ports. A dedicated Enhanced DMA (EDMA) controls each port.

8.1 SATAHC Block Diagram

The 88F5182 SATAHC consists of an arbiter, two EDMAs, and two SATA ports. Both EDMAs are
independent and may work concurrently (see Figure 14).

Figure 14: SATAHC Block Diagram

MBUS Interface

I

SATAHC Arbiter Unit

EDMA EDMA
Port 1 Port 0
A A
\ 4 4
SATA SATA
Interface Interface
SATA SATA
Port 1 Port 0

8.1.1 SATAHC Arbiter

The SATAHC arbiter:

Performs arbitration between the two EDMASs and the Crossbar interface.

m Performs address decoding of the transactions from the crossbar to the EDMAs.
m Contains the logic common to all channels.
m Contains the registers common to all channels.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 70

Document Classification: Proprietary Information April 29, 2008, Preliminary

8.1.2

8.1.3

8.1.4

8.2

8.3

8.4

Serial-ATA Il Host Controller (SATAHC)
Host Direct Control Over the Hard Disk Drive

SATAHC EDMA

Each SATAHC EDMA:

m Controls the ATA transactions associated with its port.

m Contains a 1-KB buffer for posted write and prefetch read transactions.
m Contains the registers that control the EDMA operation.

SATA Interface

The SATA interface is compliant with the Serial-ATA Il Phase 1.0 specification (Extension to SATA |
specification). See Section 7, SATA Il Interface, on page 69.

Unused SATA Ports

To save power the unused SATA ports can be shut down by setting the appropriate <PhyShutdown>
field in the Serial-ATA Interface Configuration Register (Table 379 p. 397) to 1.

Host Direct Control Over the Hard Disk Drive

When the EDMA is disabled, the <eEnEDMA> field in the EDMA Command Register (Table 351
p. 379) is cleared. The host has direct control over the device through the ATA task registers (see
Table 322, Shadow Register Block Registers Map, on page 362).

When the EDMA is enabled, the <eEnEDMA> field is set, the EDMA has full control over the hard
disk drive (HDD). If any of the ATA task registers are written, a write transaction results in
unpredictable behavior.

LED Indications

For each SATA port there are two LED indications:
m Disk present indication
m Disk active indication

These LED indications are selected through the MPP interface.

Optionally, by setting the GPIO Blink Enable Register (Table 594 p. 513), the LED indications for
both the SATA and GPIO LEDs may be set to blink.

EDMA Operation

Although the SATAHC contains two EDMAs, this document describes the operation of a single
EDMA within the SATAHC. See Figure 14, SATAHC Block Diagram, on page 70 and refer to
Appendix A.8, Serial-ATA Host Controller (SATAHC) Registers, on page 358.

The interface between the host CPU and each EDMA consists of two queues—the request queue
and the response queue. The request queue is the interface used by the host CPU to queue ATA
DMA commands as a request between the system memory and the device. The response queue is
the interface used by the EDMA to notify the host CPU that a data transaction between the system
memory and the device has been completed. Each entry in the request queue consists of an ATA
DMA command and the EDMA parameters and descriptors used to initiate the device and to perform
the data transaction.

The EDMA is further responsible for parsing the commands, initializing the device, controlling the
data transactions, verifying the device status, and updating the response queue when the command
has been completed. This all occurs without CPU intervention. Direct access to the device is also
supported for device initialization and error handling.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 71

—

= 88F5182

M ARVELL® UserManual

8.4.1 EDMA Request and Response Queues

The request queue and the response queue are each located in CPU memory and organized as a
length of 32 or 128 entries, circular queues (FIFO) whose location is configured by the Queue
In-Pointer and the Queue Out-Pointer entries. The entry length is set using <eEDMAQuelLen> field
in the EDMA Configuration Register (Table 341 p. 372)—for 32 entries <cEDMAQueLen>=0, for 128
entries field <ecEDMAQuelLen>=1. Since these pointers are implemented as indexes and each entry
in the queue is a fixed length, the pointer can be converted to an address using the formula:

Entry address = Queue Base address + (entry length * pointer value).

The request queue is the interface used by the CPU software to queue ATA DMA commands as a
request for a data transaction between the system memory and the device. Each entry in the
request queue is 32 bytes in length, consisting of a command tag, the EDMA parameters, and the
ATA device command used to initiate the device and to perform the data transaction.

The response queue is the interface used by the EDMA to notify the CPU software that a data
transaction between the system memory and the device has been completed. Each entry in the
response queue is 8 bytes in length, consisting of the command tag and the response flags.

Figure 15: Command Request Queue—32 Entries

NOTE: Field <eEDMAQueLen>=0 in EDMA Configuration Register

Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRQB 0
S] Empty | 32 Out 1 | CcrQB | 32
Pointer Pointer
In
2 64 2 64
Empty Pointer Empty
3 Empt 96 3 | crOB | 9 Out
pty Pointer
4 Empty 128 4 CRQB 128
. Empty ‘ . CRQB .
[[] [[
. Empty ‘ . CRQB ‘
31 Empty 1024 31 CRQB 1024

Doc. No. MV-S103345-01 Rev. C
Page 72

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)

Figure 16: Command Response Queue—32 Entries

EDMA Operation

NOTE: Field <eEDMAQueLen>=0 in EDMA Configuration Register

Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRPB 0
In Out
Pointer 1 Empty 8 = Pointer 1 CRPB 8
In
2 16 2 16
Empty Pointer Empty
3 Empt 24 3 CRPB 24 Out
pty Pointer
4 Empty 32 4 CRPB 32
® | Empy | @ ® | cres [)
L J [L
. Empty ' . CRPB .
31 Empty 256 31 CRPB 256
Figure 17: Command Request Queue—128 Entries
NOTE: Field <eEDMAQueLen>=1 in EDMA Configuration Register
Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRQB 0
In Out
1 32 1 32
Pointer Empty Pointer CRQB
In
2 64 2 64
Empty Pointer Empty
Out
3 Empty 96 3 CRQB 96 -_— Pointer
4 Empty 128 4 CRQB 128
. Empty ' . CRQB .
 J [] [L
. Empty ' . CRQB .
127 Empty 4096 127 CRQB 4096

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 73

—

= 88F5182
M ARVELL® UserManual

Figure 18: Command Response Queue—128 Entries

NOTE: Field <eEDMAQueLen>=1 in EDMA Configuration Register

Entry Byte Entry Byte
Number Number Number Number
0 Empty 0 0 CRPB 0
In Out
pointer P L Empty 8 - - 1 CRPB 8
In
2 16 2 16
Empty Pointer > Empty
Out
3 Empty 24 3 CRPB 24 -&— Pointer
4 Empty 32 4 CRPB 32
® | Empy | @ ® | cres ®
L J [L
. Empty ‘ . CRPB .
127 Empty | 1024 127 CRPB 1024
8.4.2 EDMA Configuration
The EDMA configuration is determined according to EDMA Configuration Register
(Table 341 p. 371). The following registers may be changed only when the <eEnEDMA> field in the
EDMA Command Register (Table 351 p. 379), is cleared, and the EDMA is disabled. These
registers must not be changed when <eENEDMA> s set.
m Inthe SATAHC Address Space (Table 320 p. 358):SATAHC Configuration Register
m In Section A.8.5, EDMA Registers
* EDMA Configuration Register
* EDMA Command Delay Threshold Register
m All registers in Section A.8.3, Shadow Registers Block Register Map, on page 362, except that
the host is allowed to change the <HOB> bit (bit [7]) in the ATA Device Control register (offset
0x82120) while the EDMA is active.
All registers in Section A.8.6, Basic DMA Registers
All registers in Serial-ATA Interface Registers (Table A.8.7 p. 388)
* <FIS Interrupt Cause Register>
* <FIS Interrupt Mask Register>
8.4.3 EDMA Mode of Operation
8.4.3.1 Basic DMA Operation
When <eEnEDMA> is cleared to 0, the EDMA is disabled, therefore the request queue and the
response queue are not in use.
The Basic DMA may be controlled directly using the:
m Basic DMA Command Register (Table 361 p. 384)
m Basic DMA Status Register (Table 362 p. 386)
m Descriptor Table Low Base Address Register (Table 363 p. 387)
m Descriptor Table High Base Address Register (Table 364 p. 387)
m SATAHC Interrupt Cause Register (Table 328 p. 365)
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 74 Document Classification: Proprietary Information April 29, 2008, Preliminary

8.4.3.2

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

The DMA is used to perform only DMA data transactions. The hard drive must be programmed by
writing to the ATA task registers before activating basic DMA.

When in Basic DMA Operation mode, the commands are processed one by one: the host configures
the device, configures the DMA, and starts it. The DMA indicates completion of the data transaction
by setting <DMAxDone> in SATAHC Interrupt Cause Register (Table 328 p. 365) and an interrupt is
generated. If an error occurs during execution of the data transfer, the EDMA Interrupt Error Cause
Register (Table 343 p. 374) is updated with the error cause, the Basic DMA Status Register

(Table 362 p. 386) is updated with the completion error, and the host is further responsible for error
handling.

Host Initialization of Basic DMA Operation

The host initializes the DMA Read/Write operation as follows:

1. Initializes the device with the data transfer command.

Initializes the Physical Region Descriptor [PRD] in memory.

Initializes the Descriptor Table Low Base Address Register.

Initializes the Descriptor Table High Base Address Register.

Makes sure the <eEarlyCompletionEn> field in the EDMA Configuration Register (Table 341

p. 372) is cleared to 0.

6. If Port Multiplier is used, initializes the <PMportTx> field in the Serial-ATA Interface Control
Register (Table 380 p. 398).

7. Activates the Basic DMA by setting the control bits in the Basic DMA Command Register
(Table 361 p. 384).

ok wn

Basic DMA Read/Write Operation

The Basic DMA performs only the data transaction.

1. The Basic DMA performs the data transaction.

2. It sets field <DMAxDone> and a maskable interrupt is generated.
3. The host is further responsible for the device completion status.

Stop Basic DMA

The host may stop the Basic DMA operation before the commands are completed.

1. The host clears the <Start> field in the Basic DMA Command Register (Table 361 p. 384).

2. If the <Start> field is cleared while the Basic DMA is still active, as indicates by the active bit in

the Basic DMA Status Register (Table 362 p. 386), the Basic DMA command is aborted, and
the data transferred may be discarded before reaching its destination.

Target Mode Operation

When the <eEnEDMA> field is cleared to 0 and the <ComChannel> field in the Serial-ATA Interface
Configuration Register (Table 379 p. 397) is set to 1, a communication channel is opened with
Serial-ATA port of another 88F5182 (or any other Marvell® devices that support target mode). The
communication channel is not symmetric: one side should be configured as an initiator (the
<TargetMode> field in the Serial-ATA Interface Configuration Register (Table 379 p. 397) is set to 0)
while the other side is configured as a target (field <TargetMode> is set to 1).

Full Communication

The two channel should be used as follows:

1. Inchannel A—The SATA port in the 88F5182 is configured as the initiator, while the companion
SATA port in the other 88F5182 is configured as the target.

2. In channel B—The SATA port in the 88F5182 is configured as the target, while the companion
SATA port in the other 88F5182 is configured as the initiator.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 75

—
=
—

M ARVELL®

88F5182
User Manual

Initiate Basic DMA Read Operation

1.
2.

Initiator Host—Activate the Initiator Basic DMA.

Initiator Host—Send the Register Device to the Host FIS (Frame Information Structure) using
the Vendor Unique interface with 10-byte command (see Section 8.6, Vendor Unique,

on page 94).

Target Transport—Update ATA task registers and set the port's <SaDevInterruptx> field in the
SATAHC Interrupt Cause Register (Table 328 p. 365), and generate the interrupt.

Target Host—Send the Register Device to the Host FIS using the Vendor Unique interface with
acknowledge.

Initiator Transport—Update the ATA task registers and optionally set the port’s
<SabDeviInterruptx> field in the SATAHC Interrupt Cause Register and generate the interrupt if
specified in the Register Device to the Host FIS.

Target Host—Activate Basic DMA, set the <eDMAActivate> field in the Serial-ATA Interface
Control Register (Table 380 p. 399).

Target Transport—Send the data as configured in the target Basic DMA.

Initiator Basic DMA—Set the port's <DMAxDone> field and generate the interrupt to the initiator
host when data transfer completes.

Target Basic DMA—Set the port's <DMAxDone> field and generate the interrupt to the target
host when data transfer completes.

Initiate Basic DMA Write Operation

1.
2.

©

10.

Initiator Host—Activate Initiator Basic DMA.

Initiator Host—Send Register Device to Host FIS using the Vendor Unique interface with
10-byte command (see Section 8.6, Vendor Unique, on page 94).

Target Transport—Update ATA task registers and set the port's <SaDevlinterruptx> field and
generate the interrupt.

Target Host—Send Register Device to Host FIS using the Vendor Unique interface with
acknowledge.

Initiator Transport—Update the ATA task registers and optionally set the port's
<SaDevInterruptx> field and generate the interrupt if specified in the Register Device to Host
FIS.

Target Host—Activate the Basic DMA, send DMA Activate frame using the Vendor Unique
interface.

Initiator Transport—Set field <eDMAActivate>.

Initiator Transport—Send the data as configured in the initiator Basic DMA.

Initiator Basic DMA—Set the port's <DMAxDone> field and generate the interrupt to initiator
host when the data transfer completes.

Target Basic DMA—Set the port's <DMAxDone> field and generate the interrupt to target host
when the data transfer completes.

is received regardless to the value of <BSY> hit in the ATA Status register (see
Table 322, Shadow Register Block Registers Map, on page 362).

EI m Inthis mode, the ATA task registers are updated when Register Device to Host FIS

Note o |ink Errors while transmitting Vendor Unique FIS are also reported in the
<LinkCtITxErr> field in the EDMA Interrupt Error Cause Register (Table 343
p. 376).
m For testing, this mode can be used to generate an External Loopback between the
Serial-ATA ports of the same 88F5182.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 76

Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

8.4.3.3 Non-queued DMA Commands

When the <eEnEDMA> field in the EDMA Command Register (Table 351 p. 379) is set to 1, the
<eSATANatv CmdQue> field in the EDMA Configuration Register (Table 341 p. 371) is clear to O and
the <eQue> field in that same register is clear to 0, the EDMA is in Non-queued mode. In this mode,
the EDMA supports only ATA DMA commands. It performs the commands that reside in the CRQB
one by one. The next command is issued to the device only when the previous command has
completed and the CRPB is updated. In this mode, the EDMA uses the following commands.

Read DMA

Read DMA EXT
Write DMA

Write DMA EXT
Read STREAM DMA
Write DMA FUA EXT
Write STREAM DMA

8.4.34 Queued DMA Commands

When field <eEnEDMA> is set to 1, field <eSATANatv CmdQue> is clear to 0 and field <eQue> is set
to 1, ATA QDMA commands are performed. These commands allows the CPU to issue concurrent
commands to the same device. Along with the command, the EDMA provides the <cDeviceQueTag>
to the device to uniquely identify the command. When the device restores register parameters during
the execution of the SERVICE command, this tag is restored. The EDMA identify the command
according to the <cDeviceQueTag> and the incoming PM port and restores the command
parameters to execute the data transaction. The ATA devices support up to 32 concurrent queued
commands, and these commands may perform out of order.

In this modes the EDMA uses the following commands:
m Read DMA Queued

m Read DMA Queued EXT
m Write DMA Queued
m Write DMA Queued EXT
m Write DMA Queued FUA EXT
8.4.3.5 SATA Native Command Queuing

When <eEnEDMA> is set to 1 and <eSATANatv CmdQue> is set to 1, a streamlined command
queuing model for SATA (SATA native command queuing) is supported. This model minimizes the
required number of protocol round trips and reduces the incurred overhead.

These commands allows the CPU to issue concurrent commands to the same device. Along with the
command, the EDMA provides the <cDeviceQueTag> as the tag of the command to uniquely identify
the command. When the device restores register parameters, this tag is restored, The EDMA
identify the command according to the <cDeviceQueTag> and the incoming PM port and restores
the command parameters to execute the data transaction. The SATA devices support up to 32
concurrent queued commands, and these commands may perform out of order.

In this mode the EDMA uses the following commands:
m Read FPDMA Queued
m Write FPDMA Queued

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 77

—

= 88F5182
M ARVELL® UserManual

8.4.4 EDMA Activation

The CPU activates the EDMA according to the following flow:

1. Verifies that the device is ready to receive data commands, the field <DET> field in the SStatus
Register (Table 367 p. 388) = 3, and the fields <Busy> and <DRQ> in the device Status register
are cleared.

2. Clears the EDMA Interrupt Error Cause Register (Table 343 p. 374) and clears the appropriate
<SaCrpbXDone> field in the SATAHC Interrupt Cause Register (Table 328 p. 365).

Initializes the EDMA Configuration Register (Table 341 p. 371).

Clears the FIS Interrupt Cause Register (Table 385 p. 404).

Initialized the FIS Configuration Register (Table 384 p. 403).

Initializes the EDMA Request Queue In-Pointer Register (Table 346 p. 377).
Initializes the EDMA Request Queue Out-Pointer Register (Table 347 p. 378).
Initializes the EDMA Response Queue In-Pointer Register (Table 349 p. 378).
Initializes the EDMA Response Queue Out-Pointer Register (Table 350 p. 379).
10. Activates the EDMA by writing 1 to field <eEnEDMA>.

©® N 0RO

Section 8.4.2, EDMA Configuration, on page 74.

The CPU accesses these registers for direct access to the device when the EDMA is
Note disabled. Accessing the above registers while EDMA is enabled—see field

<eEnEDMA>—uwiill result in unpredictable behavior.

EI While the EDMA is enabled, the host should not access the registers listed in

8.4.5 Commands Hot Insertion to EDMA Queue

Hot insertion of commands into the EDMA queue follows these steps:
1. Sets the valid Physical Region Descriptors [PRD] for the new commands.
2. Initializes the new commands in the request queue.

3. Updates the EDMA Request Queue In-Pointer Register, to enable EDMA access to the new
CRQBs in the request queue.

8.4.6 Stop EDMA

To stop the EDMA operation, the CPU should set the <eDSEDMA> field in the EDMA Command
Register (Table 351 p. 380) to 1. The EDMA stops queue processing, aborts the current command
and clears field <eEnEDMA>.

| ;] | If EDMA is aborted during commands processing, the host must set field <eAtaRst> to

recover.
Note

8.4.7 Restart EDMA

To restart the queue, the CPU must follow the EDMA activation flow. See Section 8.4.4, EDMA
Activation, on page 78.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 78 Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

8.4.8 Device Link Disconnect
|§ | | Since loss of the link may occur at any time during EDMA programming, when the CPU
receives a link-down interrupt, it must wait for reestablishment of the link (see
Note Section 8.4.9, Device Link Connect, on page 79).
See "Device Disconnect" on page 82 for the disconnect procedure.
8.4.9 Device Link Connect
When the link to the device is renewed, the EDMA sets the <eDevCon> field in the EDMA Interrupt
Error Cause Register (Table 343 p. 374).
Device hard reset (setting field <eAtaRst>) and device initialization are required before any attempt
to access the device.
8.4.10 EDMA Read Burst Limit
The <eRdBSz> field and the <eRdBSzExt> field in the EDMA Configuration Register (Table 341
p. 371), define the maximum burst read transactions SATAHC initiates towards the crossbar. The
EDMA supports a maximum read burst size of 128B.
8.4.11 EDMA Write Burst Limit
The EDMA support a maximum write burst size of 128B.
8.4.12 Port Multiplier Support
The 88F5182 supports the Port Multiplier (PM) ingredient in the following modes:
8.4.12.1 Port Multiplier—Command Based Switching
When the <eEDMAFBS> field in the EDMA Configuration Register (Table 341 p. 372) is cleared to
0, the EDMA Performs Command Based Switching as defined in SATA working group PM definition.
Field <cPMport> in each command in the request queue (CRQB) is used to define the specific port
in the Port Multiplier (PM) ingredient that belongs to this command. The EDMA is further responsible
for forwarding the commands to the correct target device. In this mode, Non Queued DMA
commands (see Section 8.4.3.3, Non-queued DMA Commands, on page 77) are supported.
8.4.12.2 Port Multiplier—FIS-Based Switching
The EDMA performs FIS-based switching, as defined in SATA working group PM definition. In this
mode, the EDMA issues multiple outstanding commands across multiple devices at the same time.
The overall system performance increases significantly with this type of switching.
The following commands are supported in this mode:
= Non-queued DMA commands (see Section 8.4.3.3, Non-queued DMA Commands, on page 77)
m Tag Command Queuing (TCQ) commands (see Section 8.4.3.4, Queued DMA Commands,
on page 77)
m Native Command Queuing commands (see Section 8.4.3.5, SATA Native Command Queuing,
on page 77)
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 79

—

= 88F5182
M ARVELL® UserManual

| ;I | The mode is selected before EDMA is enabled. It must not be changed when bit

<eEnEDMA> is set to 1.
Note

8.4.13 Asynchronous Device Notification
When Set Device Bits (SDB) FIS is received with <N> bit set to 1, the following occurs:
In the FIS Configuration Register (Table 384 p. 403):
If bit [1] in the <FISWait4Host RdyEn> field is cleared to 0, the 88F5182 ignores the FIS.
If bit <FISWait4Host RdyEn>[1] is set to 1:

e Bit [1] in the <FISWait4Host RdyEn> field is set. to 1

* The <eTransInt> field in the EDMA Interrupt Error Cause Register (Table 343 p. 375) is also
set if the corresponding bit in the FIS Interrupt Mask Register (Table 386 p. 406) is set to 1.

8.4.14 EDMA Interrupts

8.4.14.1 Error indication

The EDMA Interrupt Error Cause Register, provides the various error indications that may occur
during DMA operation. For more information, see Section 8.4.15, Error Handling, on page 81.

In addition, each DMA contains a EDMA Interrupt Error Mask Register (Table 344 p. 377). This
register may be used to mask the error bits in the EDMA Interrupt Error Cause Register. If one (or
more) of the unmasked bits in the EDMA Interrupt Error Cause Register is set, an error indication is
propagated to the SATAHC Main Interrupt Cause Register (Table 330 p. 366).

8.4.14.2 Command Completion Indication
The SATAHC Interrupt Cause Register (Table 328 p. 365), resides in the SATAHC arbiter. The
command completion indications are propagated from the EDMASs to the appropriate bit in this
register. The indications from the register are further propagated to the SATAHC Main Interrupt
Cause Register.
When the EDMA completes an ATA transaction:
m The last data leaves the 88F5182.
m The CRPB is updated.
m The EDMA indicates the appropriate bit in the SATAHC Interrupt Cause Register, and
m Aninterrupt indication is propagated to SATAHC Main Interrupt Cause Register.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 80 Document Classification: Proprietary Information April 29, 2008, Preliminary

8.4.14.3

8.4.14.4

8.4.15

8.4.15.1

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Figure 19: EDMA Interrupt Hierarchy1

SATAHC
EDMA Port 1
Device_DONE_>
CRPB_DONE CMD_1_DONE
ERROR ——————p
SATAHC
EDMA Port 0 Arbiter INT_COAL
Device_ DONE > CMD 0 DONE
CRPB_DONE ——

ERROR =

A

SATAHC Interrupt Cause register
SATAHC Interrupt Mask register

A

Interrupt Coalescing

Since the SATA ports provide a high data rate, it is important to reduce the number of interrupts that

the SATA EDMAs may generate. The 88F5182 provides an interrupt coalescing mechanism that

sets the interrupt coalescing bit in the SATAHC Interrupt Cause Register (Table 328 p. 365), and
propagates an interrupt indication if one of the following is true:

m The number of EDMA commands per the two SATA channels reached the SATAHC interrupt
coalescing threshold value (see the SATAHC Interrupt Coalescing Threshold Register
(Table 326 p. 364).

m Atleast one EDMA commands per the two SATA channels has completed and the time that
passed since its completion reached the SATAHC interrupt time threshold value (see the
SATAHC Interrupt Time Threshold Register (Table 327 p. 364)).

Device Interrupt

When the EDMA is active, the device interrupt request is masked. When the EDMA is disabled and
the device interrupt request is active, a separate bit is set in the SATAHC Interrupt Cause Register
(Table 328 p. 365) and a command completion indication is propagated to the SATAHC Main
Interrupt Cause Register.

Error Handling

Error indications from all layers are gathered in EDMA Interrupt Error Cause Register
(Table 343 p. 374).

List Of Unrecoverable Errors
These unrecoverable errors are in the EDMA Interrupt Error Cause Register
m <eDevDis> field in the EDMA Interrupt Error Cause Register (Table 343 p. 374)

1. Allinterrupt indications from the SATAHC are propagated to the SATAHC Main Interrupt Cause Register
(Table 330 p. 366).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 81

®
I;% 88F5182

M ARVELL® UserManual

<elORdyErr>

Bit [2] of the <LinkCtIRxErr> field
<LinkDataRXxErr>
<LinkDataTxErr>

m <TransProtErr>

When an unrecoverable error indication is set from the list above, the EMDA is self disabled and the
host must set the <eAtaRst> field in the EDMA Command Register (Table 351 p. 380) to recover.

8.4.15.2 PHY Layer Errors
SError Register Errors
For PHY layer errors, see SError Register (Table 368 p. 389).
The <Serrint> field in the EDMA Interrupt Error Cause Register (Table 343 p. 374) is set when at
least one bit in SError Register (Table 368 p. 389) is set to 1, and the corresponding bit in SError
Register is enabled.
Device Disconnect
When the device is disconnected, the EDMA halts and:
m Sets the <eDevDis> field in the EDMA Interrupt Error Cause Register (Table 343 p. 374).
m Disables the EDMA operation by clearing <eEnNEDMA>.
m Sets the <eSelfDis> field in the EDMA Interrupt Error Cause Register (Table 343 p. 375).
EI m Host must set <eAtaRst> to recover.
m The CPU is responsible for error recovery.
Note
8.4.15.3 Link Layer Errors
Serial-ATA Il Link Layer Error During Reception of a Control Frame
m Transient Errors: When the following errors occur during control FIS reception. The link layer
responds with R_ERR to the received frame. The transport layer drop this frame and waits for
re-transmission of the frame. This may be a transient error. The EDMA ignore these type of
errors and proceeds with normal operation.
» Serial-ATA CRC error occurs. Bit [0] in the <LinkCtIRxErr> field in the EDMA Interrupt Error
Cause Register (Table 343 p. 375) is set in.
* Internal FIFO error occurs. Bit [1] in the <LinkCtIRxErr> field is set.
* Link state errors, coding errors, or running disparity errors occur. Bit [3] in the <LinkCtIRxErr>
field is set.
m Non Transient Errors: When the following error occurs during control FIS reception. The
transport layer goes to protocol error state. The host must sets <eAtaRst> to recover.
* The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. bit
[2] of the <LinkCtIRXErr> field and the <TransProtErr> field are set.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 82

Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Serial-ATA Il Link Layer Error During Reception of a Data Frame

When the Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device, the
transport layer goes to protocol error state, bit [2] of the <LinkDataRxErr> field and the
<TransProtErr> field are set. The host must set <eAtaRst> to recover.

When the following errors occur during data FIS reception, the link layer responds with R_ERR to
the received frame. The transport layer ignores the error but the EDMA is self disabled.

m Serial-ATA CRC error occurs. Bit [0] in the <LinkDataRxErr> field is set.
m Internal FIFO error occurs. Bit [1] in the <LinkDataRxErr> field is set.

m Link state errors, coding errors, or running disparity errors occur. Bit [3] in the <LinkDataRxErr>
field is set.

Serial-ATA Il Link Layer Error During Transmission of a Control Frame

When the following errors occur during control FIS transmission, the transport layer re-transmits the
frame. This may be a transient error.
m Serial-ATA CRC error occurs. Bit [0] in the <LinkCtITXErr> field is set.

m Internal FIFO error occurs. Bit [1] of the <LinkCtITxErr> field is set in the EDMA Interrupt Error
Cause Register.

m The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. Bit [2]
in the <LinkCtITXErr> field is set.

Link layer accepts DMAT primitive from the device. Bit [3] in the <LinkCtITxErr> field is set.

FIS transmission is aborted due to collision with received traffic. Bit [4] in the <LinkCtITXErr>
field is set.

Serial-ATA Il Link Layer Error During Transmission of a Data Frame

When the following errors occur during data FIS transmission, the transport layer ignores the error,
but the EDMA is self disabled.

m Serial-ATA CRC error occurs. Bit [0] of the <LinkCtITxErr> field is set.
m Internal FIFO error occurs. Bit [1] of the <LinkCtITxErr> field is set.

m The Link Layer is reset (to Idle state) by the reception of SYNC primitives from the device. Bit [2]
of the <LinkCtITXErr> field is set.

Link layer accepts DMAT primitive from the device. Bit [3] of the <LinkCtITxErr> field is set.

FIS transmission is aborted due to collision with received traffic. Bit [4] of the <LinkCtITxErr>
field is set.

8.4.15.4 Transport Layer Errors

Serial-ATA Il Transport Layer Protocol Non Transient Errors

When a violation of the Serial-ATA protocol was detected, the transport layer goes to protocol error
state and sets field <TransProtErr> and the EDMA is self disabled. Host must set <eAtaRst> to
recover. This error state can arise from invalid or poorly formed FISs being received, from invalid
state transitions, or from other causes.

| §|| m The host must set <eAtaRst> to recover.

Note m The CPU is responsible for error recovery.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 83

—

= 88F5182

M ARVELL® UserManual

Device Error Indications

Device Errors in Non Queued or Queued DMA Commands—FIS-Based Switching Mode
Disabled

| ;I | FIS-Based Switching is disabled when field <ecEDMAFBS> field in the EDMA

Note Configuration Register (Table 341 p. 372) is cleared.

See Section 8.4.3.3, Non-queued DMA Commands, on page 77 and Section 8.4.3.4, Queued DMA
Commands, on page 77.

Bit [2] in the <eHaltMask> field in the EDMA Halt Conditions Register (Table 356 p. 383) field should
be setto 1:

When bit <Error> in the ATA status register is set to 1:
m The following registers are updated with the command information:
* “Shadow Register Block Registers Map”, see page 362
* “Serial-ATA Interface Status Register”, see page 400
* “EDMA Status Register”, see page 381
* “EDMA Interrupt Error Cause Register”, see page 374
m Bit[2] in the EDMA Interrupt Error Cause Register is set.
m The EDMA halts.

Device Error Indication in Serial-ATA Native Command Queuing

See Section 8.4.3.5, SATA Native Command Queuing, on page 77 and Section 8.4.12.2, Port
Multiplier—FIS-Based Switching, on page 79

Bit [2] in the <eHaltMask> field should be set to 1 in the EDMA Halt Conditions Register (see
Table 341 on page 371):

When bit Error in the ATA status register is set to 1, the following registers are updated with the
command information:

m “Serial-ATA Interface Status Register”, see page 400

m “EDMA Status Register”, see page 381

m “EDMA Interrupt Error Cause Register”, see page 374

m The host identifies which drive caused the error via the <PortNumDeVErr> field in the
Serial-ATA Interface Test Control Register (Table 381 p. 400)

EDMA does NOT update CRPB with the error indication.

The host must:

m Wait for completion of all outstanding commands associate to other devices (that did not
experience a device error).

m Check the <eCacheEmpty> field in the EDMA Status Register (Table 353 p. 381).
If cleared, then wait for another Device error interrupt.

m Wait for clear of the <EDMAIdle> field in the EDMA Status Register (Table 353 p. 382).
If set, then wait for another Device error interrupt. Good CRPBs may be received.

m Setthe <eDSEDMA> field in the EDMA Command Register (Table 351 p. 380) to disable EDMA
operation.
Wait for clearing of the <eEnNEDMA> field.
Issue a read log command to the drive and perform error handling accordingly.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 84

Document Classification: Proprietary Information April 29, 2008, Preliminary

8.4.15.5

8.4.16
8.4.16.1

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Device Errors in Non Queued or Queued DMA Commands in Port Multiplier—FIS-Based
Switching Mode Enabled

See Section 8.4.3.3, Non-queued DMA Commands, on page 77, Section 8.4.3.4, Queued DMA
Commands, on page 77 and Section 8.4.12.2, Port Multiplier—FIS-Based Switching, on page 79

Bit [2] in the <eHaltMask> field should be cleared to O:
Bits <FISWait4Host RdyEn>[0] should be set to 1 in the FIS Configuration Register
(Table 384 p. 403).

When bit <Error> in the ATA status register is set to 1 via the Register-Device to Host FIS, the
following registers are updated with the command information:

m Bit[0] in the <FISWait4HostRdy> field in the FIS Interrupt Cause Register (Table 385 p. 405)
field is set to 1, and the transport layer blocks reception of any new FIS until the host clears this
bit.

= “EDMA Interrupt Error Cause Register”, see page 374.

m The EDMA updates the CRPB with the error indication.

The host must:
m Get detailed error information from the Shadow Register Block, see page 158 (see Table 322,
Shadow Register Block Registers Map, on page 362).

m Detect the aborted commands for the disk that experience error according to EDMA NCQO
Done/TCQO Outstanding Status Register, EDMA NCQ1 Done/TCQ1 Outstanding Status
Register, EDMA NCQ2 Done/TCQ2 Outstanding Status Register and EDMA NCQ3
Done/TCQ3 Outstanding Status Register.

Clear the <eDevVErr> field in the EDMA Interrupt Error Cause Register (Table 343 p. 374).
Clear bit [0] in the <FISWait4HostRdy> field.

Wait for completion of all outstanding commands (that is, any commands to the EDMA that did
not complete successfully and did not abort or fail).

Set the <eDsEDMA> field to disable the EDMA operation.
Wait for clear of the <eEnEDMA> [1].

DMA Errors

Internal Parity Error
The 88F5182 SATAHC is parity protected on internal memories.

The internal SRAMSs contain a parity bit per entry (minimal transaction width). This bit is calculated
and inserted on every write to the internal SRAMSs. This bit is verified against the data when reading
from the internal SRAMs.

EDMA Data Structures

Command Request Queue

The request queue is the interface that the CPU software uses to request data transactions between
the system memory and the device. The request queue has a length of 32 entries (the
<eEDMAQuelLen> field in the EDMA Configuration Register (Table 341 p. 372) = 0) or 128 entries
(field <eEDMAQueLen>=1). The request queue is a circular queue (FIFO) whose location is
configured by the EDMA Request Queue In-Pointer Register (Table 346 p. 377), and the EDMA
Request Queue Out-Pointer Register (Table 347 p. 378).

A queue is empty when Request Queue Out-pointer reaches to the Request Queue In-pointer.

A queue is full when Request Queue In-pointer is written with the same value as the Request
Queue Out-pointer. A full queue contains 128/32 entries (as configured in field
<eEDMAQuelen>).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 85

—

= 88F5182
M ARVELL® UserManual

m A queue contains N entries when the Request Queue Out-pointer is N less than the Request
Queue In-pointer, taking into account the wraparound condition.

See Figure 15, Command Request Queue—32 Entries, on page 72 and Figure 17, Command
Request Queue—128 Entries, on page 73.

Each 32-byte EDMA Command Request Block (CRQB) entry consists of EDMA parameters and
commands for the ATA device. The CRQB data structure is written by the CPU. Table 13, p.86
provides a map of the CRQB data structure registers.

8.4.16.2 EDMA Command Request Block (CRQB) Data

Table 13: EDMA CRQB Data Structure Map

Register Offset Page

CRQB DW0—cPRD Descriptor Table Base Low Address Offset: 0x00 Table 14, p. 86
CRQB DW1—cPRD Descriptor Table Base High Address Offset: 0x04 Table 15, p. 87
CRQB DW2—Control Flags Offset: 0x08 Table 16, p. 87
CRQB DW3—Data Region Byte Count Offset: 0xOC Table 17, p. 88
CRQB DW4—ATA Command Offset: 0x10 Table 18, p. 88
CRQB DW5—ATA Command Offset: Ox14 Table 19, p. 88
CRQB DW6—ATA Command Offset: 0x18 Table 20, p. 89
CRQB DW7—ATA Command Offset: Ox1C Table 21, p. 89

Table 14: CRQB DWO0O—cPRD Descriptor Table Base Low Address
Offset: 0x00

Bits Field Description

31:0 cPRDJ[31:0] CRQB ePRD.
When <cPRDMode> is cleared to O:
The CPU at initialization should construct a ePRD table in memory. This table contains
consecutive descriptors that describe the data buffers allocated in memory for this
command. This DWORD contains bit [31:4] of the physical starting address of this table.
Bits [3:0] must be 0xO0.
When <cPRDMode> is set to 1:
This DWORD contains bits [31:1] of the physical starting address of a data region in system
memory. Bit [0] must be 0.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 86 Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Table 15: CRQB DW1—cPRD Descriptor Table Base High Address
Offset: 0x04

Bits Field Description

31:0 cPRD[63:32] CRQB ePRD.
When <cPRDMode> is cleared to O:
This DWORD contains bits [63:32] of the physical starting address of a PRD table in system
memory.
When <cPRDMode> is set to 1:
This DWORD contains bits [63:32] of the physical starting address of a data region in system
memory.
Must be set to 0.

Table 16: CRQB DW2—Control Flags
Offset: 0x08

Bits Field Description

0 cDIR CRQB Direction of Data Transaction
0 = System memory to Device
1 = Device to system memory

5:1 cDeviceQueTag = CRQB Device Queue Tag
This field contains the Queued commands used as tags attached to the command provided
to the drive.

11:6 Reserved Reserved
Must be 0.

15:12 = cPMport PM Port Transmit

This field specifies the Port Multiplier (PM) port (bits [11:8] in DWO of the FIS header)
inserted into the FISs transmission associate to this command.

16 cPRDMode CRQB PRD Mode
This bit defines how the physical data that resides in the system memory is described.
0 = PRD tables are being used. <cPRD[31:0]> and <cPRD[63:32]> provide the ePRD table
starting address.
1 = Single data region, <cPRD[31:0]> and <cPRD[63:32]> provide its starting address.
<cDataRegionByteCount> provides its length.

23:17 cHostQueTag CRQB Host Queue Tag
This 7-bit field contains the host identification of the command.

31:24 Reserved Reserved

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 87

—

= 88F5182

M ARVELL® UserManual

Table 17: CRQB DW3—Data Region Byte Count

Bits

15:0

31:16

Offset: 0x0C
Field Description

cDataRegionBy = Data Region Byte Count

teCount When <cPRDMode> is cleared to O:
This field is reserved.
When <cPRDMode> is set to 1:
This field contains the count of the region in bytes. Bit [0] is force to 0.
There is a 64 KB maximum. A value of 0 indicates 64 KB. The data in the buffer must not
cross the boundary of the 32-bit address space; that is, the 32-bit high address of all data in
the buffer must be identical.

Reserved Reserved

|§ | | The naming of the fields in the next four tables complies with the Serial-ATA
convention. The corresponding name according to the ATA convention appears in
Note parentheses.

Table 18: CRQB DW4—ATA Command

Bits

15:0

23:16

31:24

Offset: 0x10

Field Description
Reserved Reserved
Command This field contains the contents of the Command register of the Shadow Register Block (see

Table 322 on page 362).

Features This field contains the contents of the Features (Features Current) register of the Shadow
Register Block.

Table 19: CRQB DW5—ATA Command

Offset: 0x14

Bits Field Description
7:0 Sector Number This field contains the contents of the Sector Number (LBA Low Current) register of the
Shadow Register Block (see Table 322 on page 362).
15:8 Cylinder Low This field contains the contents of the Cylinder Low (LBA Mid Current) register of the
Shadow Register Block.
23:16 | Cylinder High This field contains the contents of the Cylinder High (LBA High Current) register of the
Shadow Register Block.
31:24 Device/Head This field contains the contents of the Device/Head (Device) register of the Shadow Register
Block.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 88 Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Table 20: CRQB DW6—ATA Command

Bits

7:0

15:8

23:16

31:24

Table 21: CRQB DW7—

Bits

7:0

15:8

31:16

Offset: 0x18
Field

Sector Number
(Exp)

Cylinder Low
(Exp)

Cylinder High
(Exp)

Features (Exp)

Offset: Ox1C
Field
Sector Count

Sector Count
(Exp)

Reserved

Description

This field contains the contents of the Sector Number (Exp) (LBA Low Previous) register of
the Shadow Register Block (see Table 322 on page 362).

This field contains the contents of the Cylinder Low (Exp) (LBA Mid Previous) register of the
Shadow Register Block

This field contains the contents of the Cylinder High (Exp) (LBA High Previous) register of
the Shadow Register Block.

This field contains the contents of the Features (Exp) (Features Previous) register of the
Shadow Register Block.

ATA Command

Description

This field contains the contents of the Sector Count (Sector Count Current) register of the
Shadow Register Block (see Table 322 on page 362).

This field contains the contents of the Sector Count (exp) (Sector Count Previous) register of
the Shadow Register Block

Reserved

Non-Queued Mode
When the EDMA is in Non-Queued mode, the following commands are supported.

READ DMA

READ DMA EXT
READ STREAM DMA
WRITE DMA

WRITE DMA EXT
WRITE DMA FUA EXT
WRITE STREAM DMA

Queued Mode
When the EDMA is in Queued mode, the following commands are supported.
m READ DMA QUEUED

Copyright © 2008 Marvell
April 29, 2008, Preliminary

READ DMA QUEUED EXT
WRITE DMA QUEUED

WRITE DMA QUEUED EXT
WRITE DMA QUEUED FUA EXT

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 89

—

= 88F5182
M ARVELL® UserManual

When the EDMA is in Native Command Queuing mode:
The following commands are supported.

m Read FPDMA Queued

m Write FPDMA Queued

° Other commands cause unpredictable results!
Caution

8.4.16.3 EDMA Physical Region Descriptors (ePRD) Table Data Structure
The physical memory region to be transferred is described by the EDMA Physical Region Descriptor
[ePRD] for DWORDs 0-3. The data transfer proceeds until all regions described by the ePRDs in
the table have been transferred. The starting address of this table must be 16B aligned, i.e., bits [3:0]
of the table base address must be 0x0.

| ;] | The total number of bytes in the PRD table (total byte count in DMA command) must be

4-byte aligned!.
Note 4 g

Table 22: ePRD DWORD 0

Bits Field Description
0 Reserved Reserved
31:1 PRDBA[31:1] The byte address of a physical memory region corresponds to address bits [31:1].

Table 23: ePRD DWORD 1

Bits Field Description

15:0 ByteCount Byte Count
The count of the region in bytes. Bit 0 is force to 0.
There is a 64-KB maximum. A value of 0 indicates 64 KB. The data in the buffer must not
cross the boundary of the 32-bit address space, that is the 32-bit high address of all data in
the buffer must be identical.

30:16 Reserved Reserved

31 EOT End Of Table
The data transfer operation terminates when the last descriptor has been retired.
0 = Not end of table
1 = End of table
NOTE: The total number of bytes in the PRD table (total byte count in DMA command) must
be 4-byte aligned.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 90 Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
EDMA Operation

Table 24: ePRD DWORD 2

Bits Field

Description

31:.0 PRDBA[63:32] The byte address of a physical memory region corresponds to bits [64:32].

Must be set to 0x0.

Table 25: ePRD DWORD 3

Bits Field Description
31:.0 Reserved Reserved
8.4.16.4 Command Response Queue

The response queue is the interface that the EDMA uses to notify the CPU software that a data
transaction between the system memory and the device was completed. The response queue is a
128/32 entry, circular queue (FIFO) whose location is configured by the EDMA Response Queue
In-Pointer Register (Table 349 p. 378) and the EDMA Response Queue Out-Pointer Register
(Table 350 p. 379).

The queue status is determined by comparing the two pointers:

m A queue is empty when the Response Queue Out-pointer reaches the Response Queue
In-pointer.

m A queue is full when Response Queue In-pointer is written with same value as a Response
Queue Out-pointer. A full queue contains 128/32 entries (as configured in the
<eEDMAQueLen> field in the EDMA Configuration Register (Table 341 p. 372)).

m A queue contains N entries when the Response Queue Out-pointer is N less than the Response
Queue In-pointer, taking into account the wraparound condition.

N

Note

The EDMA may write over existing entries when the queue is full.

See Figure 16, Command Response Queue—32 Entries, on page 73 and Figure 18, Command
Response Queue—128 Entries, on page 74.

Each 8-byte command response entry consists of command ID, response flags, and a timestamp,
see Table 26, “EDMA CRPB Data Structure Map,” on page 92. The CRPB data structure, described
in Table 13, “EDMA CRQB Data Structure Map,” on page 86, is written by the EDMA.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 91

—

= 88F5182
M ARVELL® UserManual

8.4.16.5 EDMA Command Response Block (CRPB) Data

Table 26 provides a map of the EDMA command response block data structure tables.

Table 26: EDMA CRPB Data Structure Map

Register Offset Table, Page
CRPB ID Register Offset: 0x00 Table 27, p. 92
CRPB Response Flags Register Offset: 0x02 Table 28, p. 92
CRPB Time Stamp Register Offset: 0x04 Table 29, p. 93

Table 27: CRPB ID Register

Offset: 0x00
Bits Field

6:0 cHostQueTag

15:7 Reserved

Description

CRPB ID

In queued DMA commands, these bits are used as a tag.

This field contains the host identification of the command.

These bits are copied from field <cHostQueTag> of Table 16, CRQB DW2—Control Flags,
on page 87.

Reserved

Table 28: CRPB Response Flags Register

Offset: 0x02

Bits Field

6:0 cEdmaSts

7 Reserved

15:8 cDevSts

Doc. No. MV-S103345-01 Rev. C
Page 92

Description

CRPB EDMA Status

This field contains a copy of the EDMA Interrupt Error Cause Register (see Table 343 on

page 374) bits [6:0] accepted in the last command.

NOTE: When the EDMA is in NCQ mode, ignore this field since the value of this field may
reflect the status of other commands.

Reserved
This bit is always O.

CRPB Device Status
This field contains a copy of the device status register accepted in the last read of the
register from the device.

Copyright © 2008 Marvell

Document Classification: Proprietary Information April 29, 2008, Preliminary

Serial-ATA Il Host Controller (SATAHC)
BIST

Table 29: CRPB Time Stamp Register
Offset: 0x04

Bits Field Description
31:0 cTS CRPB TS
When the command is completed, the content of the EDMA Timer Register (see Table 342
on page 374) is written into this field. This data may be used to estimate the command
execution time.
8.5.1 Far-End Loopback
This mode is performed according to SATA 1.0 specification, section 8.5.7. BIST activate FIS.
The supported BIST patterns are:
m L: Far-end Retimed Loopback
m TS: Transmit Only and Scrambling Bypass
m TSA: Transmit Only, Scrambling Bypass, and Align Bypass
8.5.2 BIST as the Initiator Side
The following flow should be performed by the host CPU:
m Send BIST Activate FIS using vendor unique interface to initiate BIST mode over the SATA link.
See Section 8.6, Vendor Unique, on page 94.
m Setthe <BISTMode> field in the BIST Control Register (Table 376 p. 395) to 1 to determine FIS
direction.
Initiate the <BISTPattern> field according to the transmitted BIST Activate FIS.
Initiate the BIST-DW1 Register (Table 377 p. 395) according to the transmitted BIST Activate
FIS.
m Initiate the BIST-DW?2 Register (Table 378 p. 396) according to the transmitted BIST Activate
FIS.
m Set the <BISTEn> field in the BIST Control Register (Table 376 p. 395) in the BIST Control
Register (Table 376 p. 395) to activate the pattern comparator operation.
Read <BISTResult> status to determine BIST test passes or not.
Set the <eAtaRst> field in the EDMA Command Register (Table 351 p. 380) to exit both sides of
the link from BIST mode.
8.5.3 BIST as the Target Side
The following flow should be performed, when the Serial-ATA port receives BIST Activate FIS:
m Host must set bit [1] of the <FISWait4Rdy> field in the FIS Interrupt Cause Register (Table 385
p. 404) to 1.
FIS content is updated in FIS DWO0 Register through FIS DW6 Register:
Bit [3] in field <FISWait4HostRdy> in is set.
Bit [8], the <eTransInt> field in the EDMA Interrupt Error Cause Register (Table 343 p. 375) is
also set if the corresponding bit in FIS Interrupt Mask Register is set to 1.
Host CPU sets field <BISTMode> to 0 in the to determine FIS direction.
Host CPU initiates field <BISTPattern> according to the received BIST Activate FIS.
Host CPU initiates the BIST-DW1 Register with the contents matching the received BIST
Activate FIS.
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 93

—
=
—

M ARVELL®

88F5182
User Manual

Host CPU initiates the BIST-DW2 Register with the contents matching the received BIST
Activate FIS.

Host CPU sets field <BISTEn> to activate the internal pattern generators to send the data
stream onto the Serial-ATA link.

8.6 Vendor Unique

8.6.1 Vendor Unigue Frames
The following flow should be performed to activate transmission of Vendor Unique FIS.

1. Wait until all pending commands in the EDMA are completed.

2. Disable the EDMA, set <eDSEDMA>.

3. Verify the EDMA is disable, <eEnEDMA> is cleared.

4. Verify the Transport Layer is in idle, the <TransFsmSts> field in the Serial-ATA Interface Status
Register (Table 382 p. 402) is cleared.

5. Set Vendor Unique Mode. Write 1 to the <VendorUgMd> field in the Serial-ATA Interface
Control Register (Table 380 p. 398).

6. Insert data into the Vendor Unique Register (Table 383 p. 402).

7. Repeat steps 6 until all data except the last DWORD in the vendor unique FIS is transferred.
Note that according to the Serial-ATA protocol the FIS length is limited to 8 KB.

8. Write 1 to the <VendorUqgSend> field in the Serial-ATA Interface Control Register (Table 380
p. 398).

9. Write last DWORD in the FIS to Complete FIS transmission.

10. Wait for transmission completion. The <VendorUgDn> field or the <VendorUgErr> field in the
Serial-ATA Interface Status Register (Table 382 p. 401) is setto 1.

11. Verify successful transmission of the FIS. Field <VendorUqErr> is cleared.

12. Clear Vendor Unigue Mode. Write 0 to field <VendorUgMd>.

8.7 Protocol Based Port Select

The EDMA supports the Port Selector (PS) protocol based ingredient—When the host CPU sets the
<PortSelector> field in the PHY Mode 4 Register (Table 373 p. 393), the Serial-ATA Il PHY issues
the protocol based OOB sequence to select the active host port.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 94

Document Classification: Proprietary Information April 29, 2008, Preliminary

9.1

Gigabit Ethernet Controller Interface
Functional Description

Gigabit Ethernet Controller Interface

The Gigabit Ethernet controller operates at 10, 100, and 1000 Mbps. It interfaces with the PHY via a
MII, GMII, or RGMII interface. The interface is also configurable as a proprietary 200-Mbps Marvell®
MII (MMII) interface. For details on the pinout configurations, see the applicable Gigabit Ethernet pin
multiplexing sections and the Reset Configuration section in the 88F5182 Feroceon® Storage
Networking SoC, Datasheet.

Functional Description

The Gigabit Ethernet port includes an IEEE 802.3 compliant 10-/100-/1000-Mbps MAC that supports
GMIl, Mll, and RGMII interfaces with an external PHY/SERDES device. The port speed, duplex and
IEEE 802.3 Flow Control can be auto-negotiated, according to IEEE 802.3 standards.

Backpressure is supported for half-duplex mode when operating at 10-/100-Mb speeds. Each port
supports MIB counters.

The receive port includes a dedicated MAC-DA (Destination Address) with address filtering of up to
16-Unicast MAC addresses, 256 IP Multicast addresses, and 256 Multicast/Broadcast address. The
receive port may also detect Layer2 frame-type encapsulation, as well as common Layer3 and
Layer4 protocols.

IP checksum, Transmission Control Protocol (TCP) checksum, and User Datagram Protocol (UDP)
checksum are always checked on received traffic, and may be generated for transmitted traffic. This
capability increases performance significantly by off-loading these operations from the CPU.
Jumbo-frames are also supported.

Each port includes eight dedicated receive DMA queues and one dedicated transmit DMA queue,
plus two dedicated DMA engines (one for receive and one for transmit) that operate concurrently.
Each queue is managed by buffer-descriptors that are chained together and managed by the
software. Memory space may be mapped using configurable address windows to fetch/write buffer
data and descriptors to any of the other interfaces of the device.

Queue classification on received traffic is assigned to the DMA queue, based upon a highly
configurable analysis that evaluates the DA-MAC, IP, ToS (Type of Service), IEEE 802.1q priority
tag, and protocol (ARP, TCP, or UDP). An example for use of this feature is the implementation of
differentiated services in a router interface or for real-time, jitter-sensitive voice/video traffic
intermixed with data traffic. As each queue has its own buffering, blocking is avoided and latency is
reduced for service by the CPU.

Detailed status is given for each receive frame in the packet descriptors, while statistics are
accumulated for received and transmitted traffic in the MIB counters, on a per port basis.

The 10-/100-/1000-Mbps Gigabit Ethernet unit handles all functionality associated with moving
packet data between local memory and the Ethernet ports.

The port’s speed (10, 100, or 1000 Mbps) is auto-negotiated through the PHY and does not require
user intervention. Auto-Negotiation for MIl and GMIII is according to IEEE 802.3, draft 5.0, using the
SMl interface. The 1000-Mbps unit operates only in full-duplex mode. The 100- and 10-Mbps units
operate either in half- or full-duplex mode, with the selection of the duplex mode auto-negotiated
through the PHY without user intervention. GMII only supports symmetric Flow Control.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 95

—

= 88F5182

M ARVELL® UserManual

9.2

| ;I | When Auto-Negotiation is disabled, the link must be forced down when changing port

speed.
Note P

There are eight receive queues and a single transmit queue. Receive/Transmit buffer management
is by buffer-descriptor linked lists. Buffers and descriptors can reside throughout the entire device
memory space. A Transmit buffer of any byte alignment and any size, above 8 bytes, is
supported.The Receive Buffers must be 64-bit aligned. The core frequency assumption is a
minimum of 83 MHz in gigabit operation.
Frame type/encapsulation detection is available on:
Layer 2 for: m Bridge Protocol Data Unit (BPDU)

m VLAN (programmable VLAN-ethertype)

m Ethernet v2, LLC/SNAP

Layer 3 for: m |Pv4 (according to Ethertype)

Layer 4 (only over IPv4) for:

Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)

Frame enqueueing is according to DA, VLAN-802.1q, IP-ToS, using the highest priority counts.
Frame enqueueing is captured according to the protocol type for TCP, UDP, ARP, or BPDU. Frames
smaller than the programmable minimum frame size are automatically discarded. Reception and
transmission of long frames, up to 9700 bytes, are supported. The frame type, encapsulation
method, errors, and checksums are reported in the buffer descriptor. Automatic IP header 32-bit
alignment is done in memory by adding 2 bytes at the beginning of each frame. The TCP and UDP
checksum calculations are put into the receive descriptor (and are compared with the frame
checksum for non-IP fragmented frames), even for frames over 9 KB.

The Ethernet port provides a great amount of flexibility with many programmable features. The TCP,
UDP, and IP checksums are generated on any frame size. This is programmable per frame by
command settings in the first descriptor of the frame. In addition, Cyclic Redundancy Check (CRC)
generation is programmable for each frame. There are separate, programmable transmit and
receive interrupt coalescing mechanisms to aggregate several interrupts (on a time based masking
window) before sending an indication to the CPU. The unit provides programmable zero padding of
short frames—frames less that 64 bytes.

A transmit buffer of any byte alignment and any size (greater than 8 bytes) is supported. Minimum
packet size is 32 bytes.

In the event of collision, frames are retransmitted automatically without additional fetch. An Error and
Collision report is provided in the last buffer descriptor.

Port Features

The 10-/100-/1000-Mbps Gigabit Ethernet port provide the following features:

IEEE 802.3 compliant MAC layer function.

IEEE 802.3 compliant MIl interface.

1000-Mbps operation—full duplex.

10-/100-Mbps operation—half and full duplex.

GMII symmetric Flow Control: IEEE 802.3 Flow Control for full-duplex operation mode.
MII symmetric Flow Control: Backpressure for half-duplex operation mode.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 96

Document Classification: Proprietary Information April 29, 2008, Preliminary

9.3

9.4

Gigabit Ethernet Controller Interface
Gigabit Ethernet Unit External Interface

RGMII mode (non delay).
Transmit functions:
* Zero padding for short frames (less than 64 Bytes).
* Long frames transmission (limited only by external memory size).
* Checksum on transmit frames for frames up to 1.5 KB.
* Programmable values for Inter Packet Gap and Blinder timers.
* CRC generation (programmable per frame).
» Backoff algorithm execution.
* Error reporting.
m Receive functions:
* Address filtering modes:
e 16 Unicast

* Unicast promiscuous mode reception (receptions of Unicast frames, even those not matched
in the DA filter).

e 256 IP Multicast

* 256 Multicast

* Broadcast

* Broadcast reject mode.

* Automatic discard of error frames, smaller than the programmable minimum frame size.

* Reception of long frames (Programmable legal frame size is up to 9700 bytes).
Note: Frames larger than the limit are actually received, however, they are mark in the
descriptor as Oversize errors.

* CRC checking.
* Error reporting.

Gigabit Ethernet Unit External Interface

The Gigabit Ethernet port has an external interface that can operate as a GMII, Mll, or RGMI|I port.
The PHY serial management port is done via the GE_MDC and GE_MDIO pins.

For the Gigabit Ethernet port GMII interface and the Gigabit Ethernet management interface pin
assignments, see the Pin Information section in the 88F5182 Feroceon® Storage Networking SoC,
Datasheet.

When configured to RGMII interface, the port pinout is reduced to 12 pins—six Tx pins (GE_TXC,
GE_TXD[3:0], GE_TXCTL) and six Rx pins (GE_RXC, GE_RXD[3:0], GE_RXCTL). The RGMII
interface is similar to a GMII interface running at double data rate (DDR). This means that data
driven on GE_RXD[3:0], GE_RXCTL toggles on both rising and falling edges of GE_RXC; data
driven on, GE_TXD[3:0], GE_TXCTL toggles on both rising and falling edges of GE_TXC.

For further information see Section 9.7, Network Interface (10/100/1000 Mbps), on page 117.

DMA Functionality

The port interfaces with an Ethernet PHY, on its serial side, and manages packet data transfer
between the memory and PHY. The data is stored in memory buffers, with any single packet
spanning multiple buffers if necessary. Upon completion of packet transmission or reception, a
status report including error indications, is (optionally) written by the Ethernet unit to the first
descriptor (for receive ports) or to the last descriptor (for transmit ports) associated with this packet.

The buffers are allocated by the CPU and are managed through chained descriptor lists. Each
descriptor points to a single memory buffer and contains all the relevant information relating to that

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 97

—

= 88F5182
M ARVELL® UserManual

buffer (that is buffer size, buffer pointer, etc.) and a pointer to the next descriptor. Data is read from
the buffer or written to the buffer according to information contained in the descriptor. Whenever a
new buffer is needed (end of buffer or end of packet), a new descriptor is automatically fetched, and
the data movement operation is continued using the new buffer.

Figure 20 shows an example of memory arrangement for a single packet using three buffers.

Figure 20: Ethernet Descriptors and Buffers

31 Descriptor 1 0 31 0
command/status

buffer size/byte count
buffer pointer
next descriptor pointer

packet 1 - buffer 1

Descriptor 2
command/status e
buffer size/byte count
buffer pointer
next descriptor pointer

packet 1 - buffer 2

Descriptor 3
> command/status e
buffer size/byte count
buffer pointer
next descriptor pointer

packet 1 - buffer 3

The following sections provide detailed information about the operation and user interface of the
Ethernet unit and its logic subsections.

Tx and Rx buffers are managed via link list of descriptors. Descriptors and buffers can be placed in
any of the different device interfaces. However, the buffers and descriptors are typically placed in
DRAM. Buffers and descriptors are read/write from/to memory by the port Rx and Tx DMAs.

9.4.1 Address Decoding

This section explains how the Gigabit Ethernet unit determines where to access memory for
reading/writing descriptor and packets data, in the device’s architecture.

The Gigabit Ethernet unit has six address windows. Each address window can be individually
configured.

With each of the ports’ DMA transactions (buffer read/write, descriptor read/write), the address is
compared against the address decoding registers. Each window can be configured to different target
interface. Address comparison is done to select the correct target interface.

Four of the six address windows have an upper 32-bit address register. These are used for
accessing interfaces that support more than 4 GB address space. The address generated on the
interface is composed of the 32-bit address issued by the SDMA (if it hits the relevant address
window) concatenated with the High Remap register.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 98 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

| ;I | The Gigabit Ethernet SDMA address decoder can map total of up to 4 GB of address

space.
Note P

For the port DMA to avoid accessing a forbidden address space (due to a programming bug), the
port uses access protection logic that prevents it from read/write accesses to specific address
windows.

If the address does not match any of the address windows, or if it violates the access protection
settings, an interrupt is generated. The transaction is executed but not to the original address.
Instead, the transaction is executed to a default address and target as specified in the Default
Address and ID registers (see Section A.9.1, Gigabit Ethernet Unit Global Registers, on page 410).

9.4.2 Endianess and Swap Modes

Each DMA channel has configurable behavior on Little or Big Endian support, per DMA channel data
receive and data transmission. See the <BLMT> and <BLMR> fields in the SDMA Configuration
(SDC) register (see Table 418 on page 421).

For every DMA channel, the descriptor accesses may be swapped or not. See <Swap-mode> field
in SDMA Configuration (SDC).

9.4.3 Transmit DMA Descriptors

9.4.3.1 Transmit Operation
To initialize a transmit operation, the CPU must do the following:
1. Prepare a chained list of descriptors and packet buffers.
2. Write the pointer to the first descriptor to the DMA's current descriptor registers (TxCDP).
3. Initialize and enable the Ethernet port by writing to the port’s configuration and command
registers.

4. Initialize and enable the DMA by writing to the DMA's configuration and command registers
(Triggering the DMA is accomplished by setting the ENQ bit in the Tx Command register).

After completing these steps, the DMA fetches the first descriptor from the queue, and starts
transferring data from the memory buffer to the Tx-FIFO. When the entire packet is in the FIFO
(during which it may potentially calculate and update IP checksum, TCP, or UDP checksum), the
port initiates transmission of the packet across the MII/GMII. While data is read from the FIFO, new
data is written into the FIFO by the DMA.

For packets that span more than one buffer in memory, the DMA will fetch new descriptors and
buffers as necessary.

When transmission is completed, status is (optionally) written to the first long word of the last
descriptor. The Next Descriptor’s address, belonging to the next packet in the queue, is written to the
current descriptor pointer register.

This process is repeated as long as there are packets pending in the transmit queue. When the DMA
encounters a descriptor whose next descriptor pointer field is null, the DMA resets the ENQ bit in the
Tx command register and reports the queue end via a TXEnd maskable interrupt in the ICRE
register.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 99

—
=

= 88F5182
M ARVELL® UserManual

Figure 21 shows how the transmit descriptors are managed when a two buffers packet is
transmitted.

Figure 21: Ethernet Packet Transmission Example

1. Packet 1 - Transmitting 1st buffer

—> —>
ki1 it 1 okt 2
buf 1 buf 2 buf 1
31 0 31 0 31 0
1‘ command (F=1) 1‘ command (L=1) 1| command (F=1)
byte count byte count byte count
buffer pointer —— buffer pointer | — buffer pointer
next descriptor ptr next descriptor ptr next descriptor ptr
2. Packet 1 - transmitting 2nd buffer
> —> —
pkt 1 pkt 1 pkt 2
buf 1 TXCDP buf 2 buf 1
31 0 31 0 31 0
0 command 1 command 1 command
byte count byte count byte count
buffer pointer — buffer pointer || buffer pointer
next descriptor ptr next descriptor ptr next descriptor ptr
3. Packet 2 - transmitting 1st buffer
—> —> —
pkt 1 pkt 1 pkt 2
buf 1 buf 2 TXCDP buf 1
31 31 0 31 0
0 command 0 status 1‘ command
byte count byte count byte count
buffer pointer buffer pointer — buffer pointer [
next descriptor ptr

next descriptor ptr next descriptor ptr

1. TXCDP = Transmit Current Descriptor Pointer.
Key: pkt = packet, buf = buffer, ptr = pointer.

Ownership of any descriptor other than the last is returned to the CPU upon completion of data
transfer from the buffer pointed by that descriptor. The Last descriptor, however, is returned to CPU
ownership only after the actual transmission of the packet is completed. While changing the

Doc. No. MV-S103345-01 Rev. C

Copyright © 2008 Marvell
Page 100

Document Classification: Proprietary Information April 29, 2008, Preliminary

9.4.3.2

9.4.3.3

Gigabit Ethernet Controller Interface
DMA Functionality

ownership bit of the Last descriptor, the DMA also writes status information, indicating any errors
that might have happened during transmission of this packet. There are two relevant modes:

m AM (Auto Mode): When this mode is set, the DMA will not close descriptors that are not last
descriptors (since the only change in non-last descriptors is their ownership).

m <AMNOTXES> programmable bit in the Port Configuration (GEC) (Table 411 p. 418): When this
mode is set, the Last descriptors also are not closed.

Both modes save time for crossbar access to DRAM for descriptor closing.

The transmit buffer supports any byte alignment at any size (> 8 bytes) with a minimum packet size
of 32 bytes.

Retransmission (Collision)

Full collision support is integrated into the Ethernet port for half-duplex operation mode. Half-duplex
mode is supported in 10- and 100-Mbps speeds only.

In half-duplex operation mode, a collision event is indicated each time receive and transmit are
active simultaneously. When that happens, active transmission is stopped, the jam pattern is
transmitted and the collision count for the packet increments. The packet is retransmitted after a
waiting period, conforming to the binary backoff algorithm specified in the IEEE 802.3 standard. The
retransmit process continues for multiple collision events as long as a limit is not reached. This
retransmit limit sets the maximum number of transmit retries for a single packet. It is defined by the
IEEE 802.3 standard as 16. The event of a single packet colliding 16 times is known as excessive
collision.

As long as a packet is being retransmitted, its last descriptor is kept under port ownership. When a
successful transmission takes place (i.e. no collision), a status word containing collision information
is written to the last descriptor and ownership is returned to the CPU.

If a retransmit limit is reached with no successful transmission, a status word with error indication is
written to the packet’s last descriptor, and the transmit process continues with the next packet.

It is important to note that collision is considered legal only if it happens before transmitting the 65™
byte of a packet. Any collision event that happens outside the first 64 byte window is known as a late
collision, and is considered a fatal network error. Late collision is reported to the CPU through the
packet status, and no retransmission is done.

| ;I | Any collision occurring during the transmission of the transmit packet’s last four bytes is

not detected.
Note

Zero Padding of Short Frames

Zero Padding is a term used to denote the operation of adding zero bytes to a frame. This feature is
an option for CPU off-loading.

The Ethernet port offers a per frame padding request bit in the transmit descriptor. This causes the
port to enlarge frames shorter than 64 bytes by appending zero bytes. When this feature is used,
only frames equal or larger than 64 bytes are transmitted as is. Frames smaller than 64 bytes are
zero padded and transmitted as 64-byte packets.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 101

—

= 88F5182
M ARVELL® UserManual

9434 CRC Generation

Ethernet CRC denotes four bytes of Frame-Check-Sequence appended to each packet.

CRC logic is integrated into the port and can be used to automatically generate and append CRC to
a transmitted packet. One bit in the transmit descriptor is used for specifying if CRC generation is
required for a specific packet.

Error handling: If data was fetched with an unrecoverable error (for example, a data integrity error or
a non-correctable ECC error from memory), CRC is not generated.

9.4.35 IP Checksum Generation

IPv4 checksum may be calculated during the packet DMA from memory, and it is replaced in the
checksum field, for IPv4 packets, encapsulated in Ethernet-v2 format, with or without VLAN tag (This
must be specified in the descriptor). IPv4 checksum is similarly supported for LLC/SNAP packets
(The CPU must set the LLC/SNAP-bit in the descriptor for such packets).

One bit in the transmit descriptor is used for specifying if the IPv4 checksum generation is required
for a specific packet.

9.4.3.6 TCP Checksum Generation

The TCP checksum may be enabled per frame. When TCP checksum is enabled, it is calculated
during the packet DMA from memory and replaced in the checksum field before transmission
begins.

This is supported for TCP over IPv4 over Ethernet-v2, with or without VLAN tag (This must be
specified in the descriptor). It is similarly supported for LLC/SNAP packets, including Jumbo frames
per the Alteon definition. The CPU must set the LLC/SNAP-bit in the descriptor for such packets.

Since TCP segment may be transmitted over several Ethernet packets, and since the checksum in
the next packets continue the checksum calculation of previous packets, there are two types of
checksum generation commands (depending on bit [10] in the Tx descriptor):

m Calculate the checksum on the first packet in the segment: In that case the 16 bit checksum
field in the descriptor must be zero. The checksum is done fully by the port, and will include
parsing the header according to the descriptor fields, calculate the checksum on
pseudo-header. The checksum continues with full checksum calculation on the TCP data, and
finally it is placed in the packet before transmission.

m Calculating checksum on non-first packets in the segment: The CPU is required to calculate the
initial checksum, including the pseudo-header checksum in the <L4iChk> field in the Transmit
Descriptor—Byte Count (Table 31 p. 106) (also see Figure 22, Transmit Descriptor Description,
on page 103). The DMA uses this initial checksum value in calculating the TCP checksum over
the TCP payload in the packet and place it in the TCP checksum field of the packet before
transmission.

Note that the CPU may choose to always calculate the checksum over the pseudo header, and let
the hardware take care of the payload checksum.

9.4.3.7 UDP Checksum Generation

The UDP checksum generation is the same as the TCP checksum generation support, with both first
and non-first modes (see above).

9.4.3.8 VLAN Bit

The CPU is required to specify whether the packet is VLAN tagged or not. This is needed to facilitate
the packet parsing during fetching from DRAM. It is used to correctly locate the IP header when the
IP checksum, TCP checksum, or UDP checksum generation is required.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 102 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

9.4.3.9 LLC/SNAP Bit

The Layer3 and Layer4 checksum generation is supported for Ethernet-v2 frames, or for LLC/SNAP
frames (including jumbo frames). This bit must be set in case the checksum generation features is
required for LLC/SNP frames or frames that comply with Alteon Jumbo Frame definition.

9.4.3.10 Transmit Descriptor Structure

Descriptor length is 4 long words (4LW), and it must be 4LW aligned (that is,
Descriptor_Address[3:0]==0000).

Descriptors may reside anywhere in the address space except for a null address (0x00000000),
used to indicate the end of the descriptor chain. Descriptor may not be placed on a Device-bus.
Descriptors are fetched always in burst of 4LW.

The last descriptor in the linked chain must have a null value in the <NextDescriptor Pointer>
field[31:0] of the Transmit Descriptor—Next Descriptor Pointer (Table 33 p. 106). Alternatively,
the last descriptor may be not owned. Having a not owned descriptor is useful for performance
optimization, by using a dummy pointer for adding descriptors to a chain without reprogramming
the First Descriptor Pointer (FDP) register (see also Section 15.4.3, Chain Mode, on page 182
and Section 15.4.6, Descriptor Ownership, on page 184).

For packets that span multiple descriptors, the CPU must provide ownership on all the packet’s
descriptors before giving ownership on the first descriptor of the packet, to avoid underrun
situations.

Tx buffers associated with Tx descriptors are limited to 64 KB and can reside anywhere in
memory. However, buffers with a payload of one to eight bytes must be aligned to a 64-bit
boundary. Zero size buffers are illegal.

Figure 22: Transmit Descriptor Description

33222222222 21111111111000000000 0 Offset

10987 65432109876 5432109876543210

Byte 3 Byte2 Bytel ByteO

Command / Status +0

Byte Count[15:0] <L4iChk>/Reserved +4

Buffer Pointer[31:0] +8

Next Descriptor Pointer[31:4] +C
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 103

—

= 88F5182
M ARVELL® UserManual

9.4.3.11 Tx Descriptor Command/Status

Table 30: Transmit Descriptor—Command/Status

Bits Field Description
0 ES Error Summary of MAC level errors on frame transmission.
0 = No Error

1 = Error occurred (Late Collision - LC, or Retransmit Limit - RL, or Underrun Error - UR)
NOTE: This field is only valid only if <L> bit[20] is set.
If <AM> bit[30] is set and the Port Configuration (GEC) <AMNOTXES> bit[12] is set,
this field, as well as <EC> bits[2:1], are not updated.

2:1 EC Error Coding
00=LC
01=UR
10 = RL reached (excessive collision)
11 = Reserved
NOTE: Valid only if <L> bit[20] is set and <ES> bit[0] is set.

8:3 Reserved Reserved

9 LLC/SNAP When set, this bit signifies that the packet has an LLC/SNAP format.
0 = Not LLC/SNAP
1=LLC/SNAP

NOTE: Valid only if F is set, and if GL4chk or GIPchk is set.
IP and TCP/UDP checksum is supported for LLC/SNAP frames or for Ethernetv2
frames
This bit must be set for jumbo-frame formatted, according to Alteon specification as
described in IEEE 802.3 LLC/SNAP.

10 L4Chk_Mode Provides the TCP/UDP frame type for checksum calculation mode when GL4chk=1.

0 = Frame is IP fragmented. (The CPU must provide the initial checksum value calculated

over the pseudo-header in the <L4iChk> field.)

1 = Frame is not IP fragmented. (The CPU must provide zero value in the <L4iChk> field.)

NOTE: The payload length over which the checksum is calculated is determined by the
Layer4 <LENGTH> field in the packet, and therefore, it must NOT include any pad
bytes.
Valid only if <F> is set, and if <GL4chk> = 1 and <L4type> = TCP or UDP.

14:11 IPv4HdLen Provides the length in long words (4 bytes) of the IPv4 header.
NOTE: This is only valid if <GL4chk> bit[17] and <F>[21] are set.

15 VLAN When <GL4chk> bit[17] is set, VLAN signifies if the Ethernet-v2 frame is VLAN tagged or not.
Only if <GIPchk> bit[18] or <GL4chk> are set, this field must have a correct value.
0 = Frame is not VLAN tagged.
1 = Frame is VLAN tagged.
NOTE: This is only valid if <F> bit[21] is set.

16 Latype When <GL4chk> is set, signifies which Layer4 protocol is carried in the frame.
0=TCP
1=UDP
NOTE: This is only valid if the <F> bit[21] is set.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 104 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

Table 30: Transmit Descriptor—Command/Status (Continued)

Bits

17

18

19

20

21

22

23

29:24

30

31

Field

GL4chk

GlPchk

GC

El

Reserved

AM

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Description

Generate TCP/UDP Checksum

0 = No operation

1 = Generate TCP/UDP checksum.

NOTE: This may only be set to TCP or to UDP over IPv4 over Ethernetv2 frames (tagged or
untagged).
The CPU must provide the initial checksum value calculated over the pseudo-header
in the Transmit Descriptor register’s <L4iChk> bits[15:0].
The payload length over which the checksum is calculated is determined by the ayer4
Length field in the packet, and therefore, it must NOT include any pad bytes.

This is only valid if <F> bit[21] is set.

Generate IPv4 checksum.

This is supported for Ethernetv2 and LLC/SNAP frames (tagged or untagged), with a valid
IPv4 Header (IPHL>=5, IPHL*4<=1PTL).

NOTE: This is only valid if the <F> bit[21] is set.

Padding
When this bit is set and the packet is smaller than 60 bytes, zero-value bytes are appended to
the packet. Use this feature to prevent transmission of fragments.
NOTE: This is only valid if <L> bit[20] is set.
If set, the <GC> bit[22] is regarded as also set.

Last
Indicates the last buffer of frame.

First
Indicates the first buffer of a frame.

Generate Ethernet CRC

0 = Do not generate.

1 = Generate.

NOTE: If <GIPchk> or <GL4chk> are set, this bit is regarded as set.
Only valid if the <F> bit[21] is set.

Enable Interrupt

When set, a maskable interrupt will be generated upon the closing descriptor.

NOTE: To limit the number of interrupts and prevent an interrupt per buffer situation, set this
bit only in descriptors associated with Last buffers. This way the TxBuffer interrupt is
only set when transmission of a frame is completed.

Interrupts may be further delayed by the Interrupt coalescing mechanism (see
Section 9.6.1, Interrupt Coalescing, on page 116).

Reserved

Auto Mode

When set, the DMA will not clear the Ownership bit <O> at the end of the buffer process.

If the Port Configuration (GEC) <AMNOTXES> field[12] is set, no status is reported in the last
descriptor (See <ES> field[0] and <EC>[2:1] field).

Ownership Bit
0 = Buffer owned by the CPU.
1 = Buffer owned by the DMA.

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 105

—

= 88F5182
M ARVELL® UserManual

Table 31: Transmit Descriptor—Byte Count

Bits Name

15:0 L4iChk

Description

The CPU provides the initial checksum value calculated on the pseudo header when:
The Transmit Descriptor's <GL4chk> bit[17] is set

The Transmit Descriptor’s <L4Chk_Mode> bit[10] is cleared.

Otherwise these bits are reserved.

NOTE: Only valid if the <F> bit[21] is set.

31:16 | Byte Count Number of bytes to be transmitted from the associated buffer. This is the payload size in

bytes.

Table 32: Transmit Descriptor—Buffer Pointer

Bits Name

Description

31.0 Buffer Pointer A 32-bit pointer to the beginning of the buffer associated with this descriptor.

NOTE: There is a 64-bit alignment requirement for buffers that have a setting in the Transmit
Descriptor register’s Byte Count bits[31:16] of 1-8 bytes.

Table 33: Transmit Descriptor—Next Descriptor Pointer

Bits Name

Description

31:0 NextDescriptor | A 32-bit pointer that points to the beginning of the next descriptor.

Pointer

9.4.3.12

9.4.3.13

Doc. No. MV-S103345-

Page 106

NOTE: Bits[3:0] must be set to 0.
A DMA operation is stopped when a null (all zeros) value is encountered in this field.

Transmit DMA Pointer Registers

The Tx DMA employs a single 32-bit pointer register, the TX DMA Current Descriptor Pointer
(TXCDP) register.

The TXCDP register is a 32-bit register used to point to the current descriptor of a transmit packet.
The CPU must initialize this register before enabling DMA operation. The value used for initialization
is the address of the first descriptor to use.

Transmit DMA Notes

The transmit DMA process is packet oriented. The transmit DMA does not close the last descriptor
of a packet, until the packet has been fully transmitted. When closing the last descriptor, the DMA
writes packet transmission status to the Command/Status word and resets the ownership bit. A
TxBuffer maskable interrupt is generated in the ICRE register for each queue, if the <EI> bit in the
last descriptor is set.

Updating the status in the descriptor is programmable per the <AM> bit in the Tx descriptor. When
set, the DMA will not clear the Ownership bit at the end of buffer process. If, in addition
<AMNOTXES> bit is set in the Port Configuration register, no status will be reported in last descriptor.
The advantage of this is that it reduces memory write access per descriptor This versus the trade-off
of not getting error indications per packet, like late collisions, and not relying on the ownership bit for
each descriptor.

01 Rev. C Copyright © 2008 Marvell
Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

Transmit DMA stops processing a Tx queue whenever a descriptor with a null value in the Next
Descriptor Pointer field is reached or when a CPU owned descriptor is fetched. When that happens,
a TxEnd maskable interrupt is generated in the ICRE register (per queue) and the ENQ bit is reset.
To restart the queue, the CPU issues an Enable-queue command by writing 1 to the ENQ bit in the
Tx command register.l

The transmit DMA does not expect a null Next Descriptor Pointer or a CPU owned descriptor in the
middle of a packet. Also the transmit DMA does not expect a data integrity error on descriptors.
When any of these events occurs, the DMA aborts transmission and stops queue processing (that is,
it resets the ENQ bit). A TxError maskable interrupt is generated. To restart the queue the CPU
issues an Enable_Queue command.

A transmit underrun occurs when the DMA cannot access the memory fast enough and packet data
is not transferred to the FIFO before the FIFO becomes empty. In this case, the DMA aborts
transmission and closes the last descriptor with a UR bit set in the status word. Also, a Tx_Underrun
maskable interrupt is generated. The transmit process continues with the next packet. In the port Tx
DMA, transmitting packets less than 10 KB long, such an error cannot happen, as the packet is fully
buffered in the FIFO before transmission begins.

To stop DMA operation before the DMA reaches the end of descriptor chain, the CPU issues a
Disable-Queue command by writing 1 to the DISQ bit in the DMA command register. The DMA stops
gueue processing as soon as the current packet transmission is completed and its last descriptor
returned to CPU ownership, and then resets the ENQ bit. In addition, a TXEnd maskable interrupt is
generated. To restart this queue, the CPU must issue a Enable-Queue command.

When the Ethernet link was lost during normal operation, the DMA will disable the queue by
resetting the ENQ bits. Since loosing link may happen anytime during DMA programming by the
CPU (for example, a disconnected cable or a far end disconnect) the following precaution must be
taken: If the CPU gets a link-down interrupt, then the CPU must wait for the DMA to reset the ENQ
bits of the DMA channels for Tx, after the link down event, before re-enabling the DMA channel.

The CPU must never modify the DMA configuration register or the TXCDP register while the DMA
ENQ bit is set. Modifying the TXCDP registers is allowed only when the respective DMA ENQ bit is
reset. Modifying the DMA configuration registers may be done only when all the DMA channel ENQ
bits are reset.

The DMA ENQ bit cannot be reset by the CPU. Only the hardware resets it as a response to the
DISQ command, or an end-condition, error condition, or link down.

9.4.4 Receive DMA Descriptors

94.4.1 Receive Operation

To initialize a receive operation, the CPU must do the following:
1. Prepare a chained list of descriptors and packet buffers.
NOTE: The RxDMA supports eight priority queues. If the user wants to take advantage of this capability, a
separate list of descriptors and buffers must be prepared for each of the priority queues.
2. Write the pointer to the first descriptor to the DMA's current receive descriptor registers
(RXCDP) associated with the priority queue to be started. If multiple priority queues are needed,
the user has to initialize RxCDP for each queue.

3. Initialize and enable the DMA channel by writing to the DMA's configuration and command
registers.

4. Initialize the Ethernet port by writing to the port’s configuration registers (among them PSCR,
Address Filter Tables, and MII/GMII Serial Parameter registers, if necessary) for the desired
operational modes. Enable the port by writing to the <PortEn> bit in the register Port Serial
Control (PSC) (Table 423 p. 424).

1. When the DMA stops due to a null descriptor pointer, the CPU has to write TXCDP before issuing an Enable_Queue
command. Otherwise, TXxCDP remains null and the DMA cannot restart the queue processing.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 107

—

= 88F5182
M ARVELL® UserManual

After completing these steps, the port starts waiting for a receive frame to arrive at the MIl or GMII
interface. When this occurs, receive data is packed and transferred to the RxFIFO. At the same time,
address filtering test is done to decide if the packet is destined to this port. If the packet passes the
address filtering check, a decision is made regarding the destination queue to which this packet is
transferred. When this is done, actual data transfer to memory takes place. For detailed address
filtering and priority queue assignment decisions, refer to Section 9.5, Receive Frame Processing,
on page 114.

EI Packets that fail address filtering are dropped and not transferred to memory.
Note

For packets that span more than one buffer in memory, the DMA will fetch new descriptors as
necessary. However, the first descriptor pointer will not be changed until packet reception is
completed.

When reception is completed, status is written to the first long word of the first descriptor, and the
Next Descriptor’s address is written to the current descriptor pointer register. This process is
repeated for each received packet.

the first LW of the first descriptor, will the ownership bit be reset (that is, the

EI m Only after the packet had been fully received and status information was written to
descriptor is returned to CPU ownership).

Note m Ownership of any descriptor other than the first is returned to the CPU upon
completion of the data transfer to the buffer pointed by that descriptor. This means
that, for each packet, the first descriptor of a packet is the last descriptor to return
to CPU ownership.

9.4.4.2 Receive DMA Pointer Register

The Rx DMA employs one 32-bit pointer register per queue: RxCDP.

RxCDP is a 32-hit register used to point to the first descriptor of a receive packet. The CPU must
initialize this register before enabling DMA operation. The value used for initialization is the address
of the first descriptor to use. CPU must not write to this register while the DMA is enabled. Reading
from this register could be used to assess the DMA progress, as well as to monitor the queue status.

9443 Receive DMA Notes

The Receive DMA process is packet oriented. The DMA does not close the first descriptor of a
packet, until the last descriptor of the packet is closed. When closing the first descriptor, the DMA
writes the status to the Command/Status word and resets the ownership bit. A RxBuffer maskable
interrupt is generated if the <EI> bit in the first descriptor is set.

When the DMA encounters a null next descriptor pointer or a CPU owned descriptor during normal
operation (both are the only legal queue end conditions), the current received frame may be closed
with error status in the descriptor, if there is insufficient space to store it in memory. The RxDMA
engine will assert a maskable RxErrorQueue interrupt.

If the end-condition was a null next descriptor pointer, the DMA disables the queue by resetting the
ENQ bit once it tries to prefetch the next descriptor. If the RXDMA requests a new descriptor before
the CPU re-enables the queue, the DMA increments the Discarded Frames Counter (DFC). Any new
frame to this queue will be discarded. If the ending condition was a unowned descriptor, then the
DMA does not disable itself, but rather continues to try to read the descriptor, every time a new
frame arrives to this queue.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 108 Document Classification: Proprietary Information April 29, 2008, Preliminary

9.4.4.4

9.445

Gigabit Ethernet Controller Interface
DMA Functionality

The latter case optimizes for high speed descriptor-buffer receive allocation, as it allows the CPU to
avoid re-enabling the queue, every time it adds new descriptors to the queue.

Before the CPU may enable the queue again, it must write the correct descriptor pointer to the
RxCDP register. Alternatively, in case the queue end was a result of an unowned descriptor, the
CPU may simply provide ownership of it to the DMA and re-enable it.

When a frame is received while the Ethernet link was lost (link down), the last frame received is
cut-off and closed as a bad CRC in the first descriptor.

The CPU must never modify the DMA configuration register or the RXCDP register while the DMA
ENQ bit is set. Modifying the RxCDP registers is allowed only when the respective DMA ENQ bit is
reset.

DMA ENQ bits are reset after the CPU writes to the DISQ bits, and the DMA completes the current
transaction on the disabled Queue (if working with the specific disabled Queue).If the CPU gets a
NULL of not owned descriptor in the middle of a chain and the CPU does not solve the problem in
time, the frame will be discarded, The last closed descriptor will be reclosed as a last descriptor, and
the first descriptor will be closed with a resource error.

| ;] | The RX DMA does not reset the enable bits under link down. To reprogram, disable the

gueue by writing to the DISQ bits.
Note

Frame Type Indications

The receive processing of the frame (See Section 9.5, Receive Frame Processing, on page 114)
allows passing various useful indications about each individual packet in the Rx descriptor to convey
MAC level errors (like Ethernet CRC check fail) and to facilitate CPU processing overhead in packet
header processing and in Layer3 and Layer4 checksum calculations.

See the descriptor description for details, and for a definition of the indications see Section 9.5,
Receive Frame Processing.

TCP Checksum Checking

TCP frames include a 16-bit checksum that protects the entire segment payload (that usually spans
over a number of packets) as well as TCP header and some of the IPv4 fields.

Frames may be received in an interleaved fashion from different TCP connections, and also out of
order, within any TCP connection.

The Rx frame parsing allows off loading most of the overhead from the software. The Rx descriptor
below, provides frame type indications such as: IPv4, validity of IP header with correct IPHL, IPTL,
and IP checksum checked OK, Layer2 encapsulation information (VLAN, Ethernetv2 or LLC/SNAP)
and TCP or UDP type detection.

TCP checksum check results are generated in the Rx descriptor in the following way, where two
cases are identified:

1. For frames that have in the IP Header Flags<MF> = 0 and Offset = 0x0: This means that the IP
is not fragmented (The IPv4Frg bit is reset in the descriptor) and the <RXCS> bit[25] is set to 1
in the register Port Configuration (GEC) (Table 411 p. 418). Therefore, take into account that
the L4 has the L4 header in this frame and that the L4 payload can be calculated (see note
below for the calculation).

NOTE: The length field for the pseudo header is taken from the following operation: IPTL - IPHL * 4.

For the checksum calculation, the value 16'h00 is used instead of the checksum field in the received

frame as required by the standard. In addition, the checksum calculation for each frame always

starts with the initial value of 16'h00.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 109

—

= 88F5182

M ARVELL® UserManual

9.4.4.6

The descriptor will be closed with an indication that frame is not fragmented, and the L4 checksum
compare result will be valid.

2. For frames that are not from the type of #1 (either MF!= 0 or Offset!= 0)—This means that the IP
is fragmented (The IPV4Frg bit is set in the descriptor) or the Port Configuration (GEC) register
<RxCS> hit[25] is set to O (calculation without pseudo header). Therefore, the pseudo header is
not calculated in the checksum.

The checksum is calculated only on the L4 payload and places the result in the F descriptor of each
frame. Therefore, the checksum compare bit (L4ChkOK bit) is not valid.

For this type of frame, the checksum calculation does not put zero in the checksum
| ;I | field, and therefore, in frames that have Offset =0x0 and MF!= 0 (first fragment of IP),
the checksum including the checksum field of the TCP header may be calculated. This

Note s corrected by the software driver.

For this type of frame, the software adds up all the checksum calculations for the complete IP frame
and subtracts the actual checksum field received in the frame and then does the comparison by
itself.

UDP Checksum Checking

UDP frames include a 16-bit checksum that protects the entire segment payload (usually spanning
over a number of packets) as well as UDP header and some of the IPv4 fields.

Frames may be received in an interleaved fashion from different UDP streams, and also out of order,
within any UDP stream.

The Rx frame parsing allows off loading most of the overhead from the software. The Rx descriptor
below, provides frame type indications such as: IPv4, validity of IP header with correct IPHL, IPTL,
and IP checksum checked OK, Layer2 encapsulation info (VLAN, Ethernetv2 or LLC/SNAP), and
TCP or UDP type detection.

UDP checksum check results are generated in the Rx descriptor in the following way, where two
cases are identified:

1. For frames that have in the IP Header Flags<MF> = 0 and Offset = 0x0: This means that the IP
is not fragmented (IPv4Frg bit is reset in the descriptor) and the Port Configuration (GEC)
register <RxCS> hit[25] is set to 1 (see Table 411 on page 418). Therefore, take into account
that the L4 has the L4 header in this frame as a result:

The checksum is calculated with the corresponding pseudo header and compares the results to the
frame L4 checksum. (If the frame checksum is 0x0, then the checksum function does not compare
and close the descriptor as checksum OK, since this is the indication that checksum check was
disabled, according to the standard).

NOTE: The length field for the pseudo header is taken from the following operation: IPTL - IPHL * 4.
For the checksum calculation, the value 16'h00 is used instead of the checksum field in the received
frame as required by the standard. In addition, the checksum calculation for each frame always
starts with the initial value of 16'h00.

The descriptor will be closed with an indication that frame is not fragmented and the L4 checksum
compare result will be valid.

2. For frames that are not from the type of #1 (either MF!= 0 or Offset!= 0)—This means that the IP
is fragmented (The IPv4Frg bit is set in the descriptor) or the Port Configuration (GEC) <RxCS>
bit[25] is set to 0 (calculation without pseudo header). Therefore, the pseudo header is not
calculated in the checksum.

The checksum is calculated only on the L4 payload and places the result in the F descriptor of each
frame. Therefore, the checksum compare bit (L4ChkOK bit) is not valid.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 110

Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

NOTE: For this type of frame do NOT put zero in the checksum field, and therefore, in frames that have
Offset =0x0 and MF!= 0 (first fragment of IP), calculate the checksum including the checksum field
of the UDP header. This is corrected by the software driver.

For this type of frame, the software adds up all the checksum calculations for the complete IP frame

and subtracts the actual checksum field received in the frame and then does the comparison by

itself.

9.44.7 BPDU Indication

If a frame is detected as BPDU, and BPDU detection is enabled then the BPDU bit is set (see also

Section 9.5, Receive Frame Processing, on page 114). The rest of the L3/4 fields are still provided,

but the user may want to ignore them, as they will likely not be relevant for most BPDU protocols.

94438 Receive Descriptor Structure

m Descriptor length is 4LW, and it must be 4LW aligned (i.e. Descriptor_Address[3:0]==0000).

m Descriptors may reside anywhere in the address space except for the null address
(0x00000000), used to indicate the end of a descriptor chain. Descriptors cannot be placed on a
Device-bus as they are fetched always in a burst of 4LW.

m The last descriptor in the linked chain must have a null value in the <NextDescriptor Pointer>
field[31:0] of the Transmit Descriptor—Next Descriptor Pointer (Table 33 p. 106). Alternatively,
the last descriptor may be not owned. The latter option is useful for performance optimization,
by using a dummy pointer for adding descriptors to a chain without reprogramming the RxCDP
register (see also Section 15.4.3, Chain Mode, on page 182 and Section 15.4.6, Descriptor
Ownership, on page 184).

m Receive buffers associated with Receive descriptors are limited to 64 KB and must be 64-bit
aligned (i.e., Buffer_Address[2:0]==000).

m The minimum buffer size for the Receive buffer is eight bytes.

Table 34: Receive Descriptor Description
3 3 2 2 22 222221111111111000U0W00O0TO0O0 0 Offset
1 0 9 76 5432109 87 65432109876 543210
Byte 3 Byte2 Bytel ByteO
Command / Status +0
Byte Count[15:0] Buffer Size[15:3] F 0O 0 +4
r
g
Buffer Pointer[31:3] 0 0 0 +8
Next Descriptor Pointer[31:4] 0 0 0 0 +C
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 111

M ARVELL®

9.4.4.9

—

= 88F5182

User Manual

Receive Descriptor Command/Status

Table 35: Receive Descriptor—Command/Status

Bits

0

2:1

18:3

19

20

22:21

23

24

Name

ES

EC

L4Chk

VLAN

BPDU

Layer4d

Layer2Ev2

L3IP

Doc. No. MV-S103345-01 Rev. C

Page 112

Description

Error Summary

0 = No Error

1 = Error Occurred (RE or MF or OR or CE),
NOTE: This is only valid if <F> bit[27] is set.

MAC Error Coding

00 = CE - CRC Error

01 = OR - Overrun Error

10 = MF - Maximum Frame Length Error. Frame is longer than the MAX_FRAME_SIZE.

11 = RE - Resource Error (No descriptors in the middle of the frame)

NOTE: This is only valid if the <F> bit[27] and the <ES> bit[0] are set.
If multiple errors occurred, then the reporting priority is Resource Error, Maximum
Frame Length Error, Overrun Error, and CRC Error.

Calculated TCP/UDP Checksum

NOTE: This is only valid if <Layer4> field[22:21] are set to 00 or 01.
This is only valid if the <F> bit[27] is set and no MAC errors occurred.
This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.
The calculation does not include the pseudo header if the Receive Descriptor—Byte
Count register’s <IPv4Frg> bit[2] is set or the Port Configuration (GEC) register
<RxCS> hit[25] is set to 0 (calculation without pseudo header).

VLAN Frame is VLAN tagged (according to programmed VLAN-Ethertype).
NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

Bridge Protocol Data Unit
Set when the frame is BPDU.
NOTE: Only valid if the <F> bit[27] is set and the <ES> bit[0] is set to 0.

Frame encapsulation and protocol.
00 = Frame is TCP over IPv4 over Ethernetv2 or LLC/Snap (with or without VLAN tag). The
Checksum result is provided in the <L4Chk> bits[18:3].
01 = Frame is UDP over IPv4 over Ethernetv2 or LLC/Snap (with or without VLAN tag). The
Checksum result is provided in the <L4Chk> bits[18:3].
10 = Other Frame type.
11 = Reserved
NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to O.
This is only valid if the <IPHeadOK> bit[25] and the <L3IP><L3IP> bit[24] are set.

Set if Layer2 is Ethernetv2.

Frame type is IPv4.

This is only set if Ethertype-0x800 over Ethernetv2, or over LLC/SNAP (with or without VLAN
tag). Otherwise, reset.

NOTE: This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to 0.

Copyright © 2008 Marvell
Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
DMA Functionality

Table 35: Receive Descriptor—Command/Status (Continued)

Bits

25

26

27

28

29

30

31

Name

IPHeadOK

El

L4ChkOK

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Description

IP header is “ok” if:
* Frame type is IPv4
« IPHL >=5
« IPHL *4<= IPTL
* |Pheader Checksum is OK.
0 = Check failed
1 = Check passed
NOTE: This is only valid if <L3IP> bit[24] is set.
This is only valid if the <F> bit[27] is set, and the <ES> hit[0] is set to 0.

Last
Indicates the last buffer of a frame.

First
Indicates the first buffer of a frame.

Unknown Destination Address

The frame is Unicast and was not matched to the MAC Address Base (DA[47:6]).

NOTE: This is only set if working in promiscuous mode. See the Port Configuration (GEC)
register <UPM>bit[0].
This is only valid if the <F> bit[27] is set and the <ES> bit[0] is set to 0.

Enable Interrupt

When set, a maskable interrupt is generated upon the closing descriptor.

NOTE: To limit the number of interrupts and prevent an interrupt per buffer situation, set the
<RIFB> (Receive Interrupt on Frame Boundary) bit[0] in the SDMA Configuration
(SDC) register.
Interrupts may be further delayed by the Interrupt coalescing mechanism (see
Section 9.6.1, Interrupt Coalescing, on page 116).

Layer4 Checksum OK

1 = OK (passed)

0 = Check failed

NOTE: If <Layer4> field[22:21] is 01 and the received frame checksum field was 16'h00, then
the bit will indicate passed.
This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.
This is only valid if <Layer4> is 00 or 01.
This is only valid if the <F> bit[27] is set, and the <ES> bit[0] is set to O.
This is only valid if the Receive Descriptor - Byte Count register’s <IPv4Frg> bit[2] is
cleared and the Port Configuration (GEC) register’'s <RxCS> bit[25] is set to 1.

Ownership
0 = Buffer owned by the CPU.
1 = Buffer owned by the DMA.

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 113

—

= 88F5182
M ARVELL® UserManual

Table 36: Receive Descriptor—Byte Count

Bits Name Description
1:0 Reserved Reserved
2 IPv4Frg IPv4 is fragmented.

1 = Fragmented
0 = Not fragmented
NOTE: This is only valid if the <IPHeadOK> bit[25] and the <L3IP> bit[24] are set.

This is only valid if the Receive Descriptor - Command/Status register’s <F> bit[27] is
set, and <ES> bit[0] is set to 0.

15:3 Buffer Size Buffer Size in Bytes
When the number of bytes written to this buffer is equal to the field's value, the DMA closes
the descriptor and moves to the next descriptor.
NOTE: The buffer size is represented by 16 bits, where the lower 3 bits are fixed to zero.
Buffer Size = Bits[15:3] | | '000".

31:16 | Byte Count When a descriptor is closed, this field is written by the port with a value indicating the number
of bytes actually written by the DMA into the buffer.
NOTE: This is only valid if the <F> bit[27] is set.

Table 37: Receive Descriptor—Buffer Pointer
Bits Name Description

31:.0 Buffer Pointer A 32-bit pointer to the beginning of the buffer associated with this descriptor.
NOTE: This field must be 64-bit aligned; therefore, bits[2:0] must be set to 0.

Table 38: Receive Descriptor—Next Descriptor Pointer

Bits Name Description

31:0 Next Descriptor =~ A 32-bit pointer that points to the beginning of the next descriptor.
Pointer NOTE: This field must be 4LW aligned; therefore, bits[3:0] must be set to 0.
The DMA operation is stopped when a null (all zeros) value in the Next Descriptor Pointer
field is encountered.

9.5 Receive Frame Processing

Once a frame is received by the port, the frame is parsed to go through the following processing:
MAC errors checking.

Accept or reject decision.

Select the Receive queue (0 through 7).

MIB counter increments.

Extract Layer2/3/4 protocols and perform IP and/or TCP/UDP checksum.

Some MAC level errors, like fragments, are normally filtered from reception of frames and are only
counted in MIB counters. Other MAC level errors (like CRC error frames and frames beyond the
maximum allowed size) are reported in the first descriptor and in the MIB counters.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 114 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Receive Frame Processing

EI m The frames maximum size is defined in the Port Serial Control (PSC) register’s

<MRU> bits [19:17]. The receiver can also accept jumbo frames, where the IEEE
802.3 Type/Length field is set to 0x8870 (with or without IEEE 802.1q VLAN tag).

Note m In this datasheet, the MAC Destination address bit [47] is the Multicast/Unicast bit.
The first DA byte received on the GMII RXD[7:0] pins is DA[40:47]. The last byte
GMil received on the RXD[7:0] pins is DA[0:7]).
9.5.1 Parsing the Frames

The frame goes through the following stages to decide whether or not to accept the frame and to
determine which queue receives it:

1.

If the frame is in the Bridge Protocol Data Unit (BPDU) format (DA is equal to
01-80-C2-00-00-00 through 01-80-C2-00-00-FF, except for the Flow Control Pause packets)
and the Port Configuration Extend (GECX) register’s Span bit[1] is set, the frame is received in
queue 7, the highest priority queue.

If the frame is Unicast then the MAC DA bits[47:4] are compared with MAC[47:4] (see the MAC
Address Low (MACAL) and MAC Address High (MACAH) registers). If they do not match, then
according to the Port Configuration (GEC) register's <UPM> (Unicast Promiscuous Mode)
bit[0], the frame is rejected or accepted to the queue in the register’'s <RXQ> bits[3:1]. If
matched, then the MAC DAJ[3:0] bits are used as a pointer to the Unicast Table entries in the
DA-Filter table. The Destination Address Filter Unicast Table (DFUT) register’s <Pass> and
<Queue> bits (3:0) determines whether to filter the frame and its queue number.

Or, if DA=0OxFFFFFFFF and the protocol is 0x806 Address Resolution Protocol (ARP), in
Ethernet-v2, tagged or not, the frame is accepted or rejected according to the Port
Configuration register’s <RBArp> bit[9] setting and the queue is handled by the <RXQArp>
bits[6:4].

Or, if DA=0xFFFFFFFF and the protocol is 0x800 Internet Protocol (IP), in Ethernet-v2 or
LLC/SNAP, tagged or not, the frame is accepted or rejected according to the Port Configuration
register’s <RBIP> bit[8] and the queue is handled by the <RXQ> bits[3:1].

Or, if DA=0xFFFFFFFF and the frame is accepted or rejected according to the Port
Configuration register’s <RB> bit[7] and the queue is handled by the <RXQ> bits[3:1].

Or, if DA=0x01-00-5E-00-00-XX (where XX is between 0x00 and OxFF) the MAC DA[7:0] bits
are used as a pointer to the Special Multicast Table entries in the DA-Filter table. The <Pass>
and <Queue> bits determine the frames’ filter and queue number.

Or, if (the frame is a Multicast of another type): A CRC-8bit (Polynomial: x"8+x"2+x"1+1) and
the result is used as an index to the Multicast Broadcast Table entries in the DA-Filter table. The
<Pass> and <Queue> bits determine the frames’ filter and queue number.

In stages 2 and 4-7, If:

The frame is not discarded,
The frame is not BPDU and the Port Configuration Extend register’s Span bit[1] is not enabled,

The frame is not a Unicast frame that is accepted because of the Port Configuration (GEC)
register’'s <UPM> bit[0] setting or the frame is ARP protocol broadcast,

the resulting queue is still not the final one. The final queue is determined by one of the following
scenarios:

Copyright © 2008 Marvell
April 29, 2008, Preliminary

If the frame is a Transmission Control Protocol (TCP) frame and the Port Configuration (GEC)
register’'s <TCP_CapEn>[14] is set, the queue number is determined by the Port Configuration
register’'s <TCPQ>bits[18:16].

If the frame is a User Datagram Protocol (UDP) frame and the Port Configuration register’s
<UDP_CapEn> hit[15] is set, the queue number is determined by the Port Configuration
register’s <UDPQ> bits[21:19].

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 115

—

= 88F5182
M ARVELL® UserManual

m If the frame is VLAN tagged or is an IPv4 frame (over Ethernet v2 or LLC/SNAP), the queue
number is determined as the highest queue from the one determined by the three DA filters, as
described in stages 2—7.

* |EEE 802.1q if the frame is VLAN tagged (see the VLAN Priority Tag to Priority (VPT2P)
register)

» Differentiated Services-Code-Point (see the IP Differentiated Services CodePoint 0 to Priority
(DSCPO) register) if frame is IPv4 over EthernetV2 or LLC/Snap.

= Tonotuse IEEE 802.1g mapping or the Differentiated Services CodePoint (DSCP),
| ;l | program these registers to their default value— all zeros.
Before enabling the port, the DA-Filter tables must be programmed in full, as their

Note initial values are undefined.

9.6 Ethernet Interrupts

The GbE unit activates the following interrupt bits in the Main Interrupt Cause Register

(Table 99 p. 253):

<GbEErr> This is a unit level Interrupt activated by the <EtherintSum> field in the Ethernet Unit
Interrupt Cause (EUIC).

<GbEMisc> Activated by bits [16] and [23:20] of the Port Interrupt Cause Extend (ICE)
(Table 429 p. 431).

<GbERx> Activated by bits [18:2] of the Port Interrupt Cause (IC) (Table 428 p. 430) and bits
[18:17] of the Port Interrupt Cause Extend (ICE) (Table 429 p. 431).

<GbETx> Activated by bits [30:19] of the Port Interrupt Cause (IC) (Table 428 p. 430) and bits
[19] and [15:0] of the Port Interrupt Cause Extend (ICE) (Table 429 p. 431).

<GbESum> A port interrupt summary bit activated by bit [31] in the Port Interrupt Cause Extend
(ICE) (Table 429 p. 431).

9.6.1 Interrupt Coalescing

Since the Gigabit Ethernet line rate provides a high packet rate, it is important to reduce the amount
of interrupts that the Ethernet DMA may generate.

For this purpose, the DMA Receive and Transmit have several modes that provide the option of
choosing the type of events that initiate issuing interrupts. (See also Port Interrupt Cause Extend
(ICE) and Ethernet Unit Interrupt Cause (EUIC)).

The most intensive interrupts are the packet-level interrupts on receive and transmit. In addition to
the CPU'’s ability to specify, in the Receive and Transmit descriptor, which descriptor close may
cause an interrupt, the port provides a programmable mechanism that allows coalescing these types
of interrupts.

On a per port basis, and for Rx and Tx transactions, the device has a programmable timer in the
SDMA Configuration (SDC) register’s <IPGIntRx> bits[21:8] for receive and <IPGIntTx> (transmit) to
force a minimum time between interrupts associated with the Port Interrupt Cause (IC) register’s
<RxBufferQueue> bits[9:2] and the Port Tx FIFO Urgent Threshold (PTFUT) register <IPGIntTx>
bits[17:4]. This minimum time is programmable and may be changed dynamically during normal
operation.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 116 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Network Interface (10/100/1000 Mbps)

The flow for packet-level interrupts on receive and transmit is as follows:

| ;] | The following example describes the Receive flow, however, the Transmit flow is

implemented in an identical fashion.
Note

1. A non-masked <RxBufferQueue> interrupt cause is asserted. As a result, an interrupt is raised
(propagated in the interrupt hierarchy etc.) and the relevant interrupt coalescing counter begins
to count. From this point (after CPU read from the interrupt register) until the count-down
finishes, no new interrupts can be raised due to new packet reception (transmission) from any
of the eight queues.

2. During the countdown time, and before the next CPU read of the Port Interrupt Cause (IC)
(Table 428 p. 430) register (or Port Interrupt Cause Extend (ICE) (Table 429 p. 431) for Tx), the
<RxBufferQueue> events would still cause loading 1 to the appropriate cause bit, but would not
cause raising an interrupt at the unit, port, or port-Rx (Tx) level. Before reading the register, it is
assumed that the CPU do not reset the <RxBufferQueue> cause bits.

3. Once the CPU reads the IC register (or ICE register for Tx), the value of all <RxBufferQueue>
interrupts that are recorded later on, accumulate in a shadow register, actually two separate
registers—one for IC register <RxBufferQueue> and one for ICE register TxBuffer additional
events, both of which are invisible to the software.

4. When the countdown timer expires, the <RxBufferQueue> in the shadow register is loaded into
the IC register (or ICE register for Tx). This may cause raising an interrupt, again.

This mechanism prevents loss of interrupt indications in the time frame between the time that the
CPU reads the interrupt register and the time that it starts switching off interrupt bits. During this
interval, new interrupts that arrive for the same receive or transmit queue would have been lost and
buffers might have gotten stuck indefinitely. The shadow registers, just described, prevents this from
happening.

9.7 Network Interface (10/100/1000 Mbps)

The port can be connected to a Gigabit Ethernet network using the GMII PHY (to 1000BASET
copper or 1000BASEX), to the RGMII PHY, or the MIl PHY.

To support all speeds, the port includes several MAC blocks suited for 10, 100, and 1000 Mbps with
the following considerations:

m Support for half-duplex (for 10 and 100 Mbps only) and full duplex (in all speeds).

m Backpressure option in half duplex (for Ml mode only).

m Flow Control option in full-duplex.

Auto-Negotiation is supported for all interface modes:
MIl and GMIII according to IEEE 802.3 draft 5.0 using MDC/MDIO pins.

9.7.1 Gigabit Ethernet MAC

The port Gigabit MAC supports the following:

m Connection to GMII PHY (for 1000BASEX or 1000BASET), or GMII PHY.

= 1000 Mbps full duplex.

m Standard IEEE 802.3 Flow Control in full duplex.

The port MAC performs all of the functions of the IEEE 802.3 such as frame formatting, frame
stripping, collision handling, deferral to link traffic, etc. The port ensures that any outgoing packet

complies with the IEEE 802.3 specification in terms of preamble structure. The port transmits 56
preamble bits before the Start-of-Frame Delimiter.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 117

—

= 88F5182
M ARVELL® UserManual

9.7.2 GMII Interface

The transmit and receive operations are done in full duplex and implement the standard.

9.7.2.1 GMII Transmission in Full Duplex

When the port has a frame ready for transmission and the IPG counter has expired, frame
transmission begins.

| ;I | The Carrier Sense (CRS) and Collision Detect (COL) input pins are ignored in this

mode.
Note

The data is transmitted via pins GE_TXDJ[7:0] of the transmitting port and clocked on the rising edge
of GE_TXCLK_OUT. At the same time, signal GE_TXEN is asserted. The GE_TXER signal is
always driven LOW as there is no carrier-extension required.

9.7.2.2 GMIl Reception

Frame reception starts with the PHY'’s assertion of GE_RXDV or GE_RXER (while the port is not
transmitting). Once GE_RXDV or GE_RXER is asserted, the port begins sampling incoming data on
pins GE_RXD[7:0] on the rising edge of the GE_RXCIk.

E The GE_RXDV signal is high during reception of packet-data.
Note

9.7.3 RGMII Interface

The port supports RGMII/Modified Ml interface. The RGMII specification proposed by Hewlett
Packard is intended to be an alternative to the IEEE 802.3 (MIl) and the IEEE 802.3 (GMII).

The RGMII specification reduces the number of pins required to interconnect the MAC and the PHY
to 12 pins, in a cost effective and technology independent manner. To accomplish this objective, the
data paths and all associated control signals are reduced, control sighals are multiplexed together,
and both edges of the clock are used (see Figure 23). For Gigabit operation, the clocks operate at
125 MHz. For 10/100 operation, the clocks operate at 2.5 MHz or 25 MHz, respectively. The transmit
and receive operations are done in full duplex and implement the standard.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 118 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Network Interface (10/100/1000 Mbps)

Figure 23: RGMII Pin Interconnection Between MAC and PHY

MAC RxC PHY

TxC
TxDJ[3:0]

TxCTL

RxD[3:0]
RXCTL

MDC A f

MDIO

9.7.3.1 Signal Definition

The RGMII interface uses a 125 MHz DDR clock with a 4-bit wide data path. All signals shall be
conveyed with positive logic, except where explicitly defined differently. For descriptive purposes, a
signal shall be at a logic “high” when it is at a valid voltage level greater than VOH_MIN, and logic
“low” when it is at a valid voltage level less than VOL_MAX.

Table 39: RGMII /Modified MII Signals

Port Pins RGMII

GE_TXCLK_OU = TXC
7

GE_TXCTL TX_CTL

GE_TXD[3:0] TD[3:0]

GE_RXCLK RXC

GE_RXCTL RX_CTL

GE_RXDI[3:0] RD[3:0]

Description

125 MHz, 25 MHz, or 2.5 MHz transmit clock derived from the
CLK_125 input.

Transmit Control Signals. GE_TXEN is encoded on the rising edge
of GE_TXCLK, and GE_TXERR XOR GE_TXEN is encoded on the
falling edge of GE_TXCLK.

Transmit Data. In 1000BASE-T and 1000BASE-X modes, TxD[3:0]
is presented on both edges of TxC. In 100BASE-TX and 10BASE-T
modes, GE_TXDJ[3:0] is presented on the rising edge of GE_TXCLK.

125 MHz, 25 MHz, or 2.5 MHz receive clock with a +/- 50 ppm
tolerance derived from the received data stream and based on the
selected speed.

Receive Control Signals. GE_RXDV is encoded on the rising edge
of GE_RXCLK, and GE_RXERR XOR GE_RXDV is encoded on the
falling edge of GE_RXCLK.

Receive Data. In 1000BASE-T and 1000BASE-X modes, RXD[3:0]
is presented on both edges of GE_RXCLK. In 100BASE-TX and
10BASE-T modes, GE_RXD[3:0] is presented on the rising edge of
GE_RXCLK.

9.7.3.2 RGMII 10-/100-Mbps Functionality—Modified Mli

This interface can be used to implement 10-/100-Mbps Ethernet Ml by reducing the clock rate to 25
MHz for 100-Mbps operation, and V MHz for 10 Mbps. The MAC always generates the SYS_CLK
signal and the PHY always generates the GE_RXCLK signal.

Copyright © 2008 Marvell

April 29, 2008, Preliminary Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 119

—

= 88F5182
M ARVELL® UserManual

During packet reception, GE_RXCLK may be stretched on either the positive or negative pulse to
accommodate the transition from the free running clock to a data synchronous clock domain. When
the speed of the PHY changes, a similar stretching of the positive or negative pulse is allowed. No
glitching of the clocks is allowed during speed transitions.

The MAC must hold GE_TXCTL (TX_CTL) low until the MAC has ensured that GE_TXCTL
(TX_CTL) is operating at the same speed as the PHY.

9.7.3.3 Signals Encoding
The RGMII interface is basically a GMII interface running at double data rate:

m GMII TxD[3:0] is driven on GEx_TXDI[3:0] on the rising edge of GEx_TXCLKOUT;
GMII TxD[7:4] is driven on GEx_TXD[3:0] on the falling edge of GEx_TXCLKOUT.

GMII TXEN is driven on GEx_TXCTL on the rising edge of GEx_TXCLKOUT.
A logical value of GMII TXEN XOR GMII TXERR is driven on GEx_TXCTL on the falling edge of
GEx_TXCLKOUT.

m GMII RxD[3:0] is sampled on GEx_RXD[3:0] on the rising edge of GEx_RXCLK; GMII RxD[7:4]
is sampled on GEx_RXD[3:0] on the falling edge of GEx_RXCLK.
GMII RxDV is sampled on GEx_RXCTL on the rising edge of GEx_RXCLK.
A logical value of GMII RxDV XOR GMII RXERR is sampled on GEx_RXCTL on the falling edge
of GEx_RXCLK.

9.7.3.4 In-Band Status
To ease detection of the link status, speed, and duplex mode of the PHY, inter-frame signals are

placed onto the GE_RXD[3:0] signals. CRS is indicated when, simultaneously, RX_DV = True or
RX_DV = False, RX_ER = True, and a value of FF binary exists on the GE_RXD[3:0] bits.

Collision is determined at the MAC when TX_EN = True, while either GE_CRS or PO_RXDV are
true. The PHY does not assert GE_CRS as a result of GE_TXEN being true.

9.7.4 10-/100-/200-MlI Interface

The port MAC allows it to be connected to a 10-Mbps, 100-Mbps or 200-Mbps network. The port
interfaces to an IEEE 802.3 10/100 Mbps MIl compatible PHY device. The data path consists of a
separate nibble-wide stream for both transmit and receive activities.

The port can switch automatically between 10- or 100-Mbps operation depending on the speed of
the network. Data transfers are clocked by the 50-MHz transmit and receive clocks in 200-Mbps
operation, or by 25-MHz transmit and receive clocks in 100-Mbps operation or by 2.5-MHz transmit
and receive clocks in 10-Mbps operation. The clock inputs are driven by the PHY. The PHY controls
the clock rate based on its configuration or on the Auto-Negotiation function.

EI The 200-Mbps operation uses the proprietary Marvell Mil (MMII) interface.
Note

9.7.5 Interface Mode Selection

Every Gigabit Ethernet interface mode is individually configured to RGMII/GMII/MII by its reset
configuration pins mode.

If Auto-Negotiation is enabled for GMII or Ml interface mode (by the Port Serial Control (PSC)
register's <AN_Duplex> bit[2] and <AN_FC> bit[2]), the MDC/MDIO Auto-Negotiation takes place.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 120 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Auto-Negotiation Modes

9.8 Auto-Negotiation Modes
9.8.1 Auto-Negotiation in MIlI/GMII Modes

The port implements the standard IEEE Auto-Negotiation, using the Serial Management Interface
(SMI), for the following:

m Detect Link status

m Duplex: half- and full-duplex operation
m Flow Control for full-duplex

= Speed

To implement speed Auto-Negotiation, set the Port Serial Control (PSC) register <ANSpeed> bit [13]
to 0, to switch between GMII and MIl modes.

| ;] | The registers and bits referred to in this sub-Section (for example, registers 4, 5, and 15

and bit 1.8) are PHY Device registers.
Note

The port continuously reads the PHY register 1 to establish the link status, and also to determine
whether or not bit 1.8 in PHY register 1 is set.

When exiting from reset, or when the link changes from up to down, the port advertises its Flow
Control ability (if Auto-Negotiation for Flow Control is enabled by the Port Serial Control (PSC)
register’s <AN_FC> bit.

The port reads register bit 1.8. If this bit is reset, then the PHY does not support 1000 Mbps.

If bit 1.8 is set, the PHY supports 1000 Mbps (but the speed may still resolve to 10 or 100 Mbps at
the end) and register 15 exists. The port continues to read register 15 to determine whether the PHY
is 1000BASEX-capable or 1000BASET capable. If it is L000BASEX, then the port regards the
multiplexed speed as 1000 Mbps only and follows the IEEE 802.3 clause 37 rules (for register 4 and
5 format) for duplex and Flow Control Auto-Negotiation. If it is 1000BASET capable, the port follows
the IEEE 802.3 rules to resolve the speed (1000 Mbps (using GMII interface) or 10/100Mbps (using
MIl interface)), duplex mode, or Flow Control.

After Auto-Negotiation is complete, the port resolves negotiated modes of operation. These values
update the Port Status register fields and affect the Network port operation.

9.8.2 Auto-Negotiation Bypass Mode

The IEEE standard Auto-Negotiation state machine, per the IEEE 802.3 Clause 37, requires that
both sides support Auto-Negotiation before the link can be established. If one side implements the
Auto-Negotiation function and the other does not, two-way communication is not established, unless
Auto-Negotiation is manually disabled and both sides are configured to work in the same operational
modes.

When the bypass mode is enabled, the port Auto-Negotiation state machine changes from the type
specified in clause 37:

When entering the “Ability_Detect” state, a timer is started to count down with an initial value of 20
times the link-timer value. Since the link-timer value is ~10 ms, the “Ability_Detect” associated timer
is ~200 ms.

If the timer expires and, during this period, the receive synchronization machine stayed in

synchronization and did not report RUDI(INVALID) and the state-machine is still in the Ability_Detect
state, this is interpreted as a sign that the other side is “alive” but cannot send configuration codes to
perform Auto-Negotiation. Therefore, the state-machine moves to a new “Bypass_Link_Up” state. In

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 121

—

= 88F5182
M ARVELL® UserManual

this state, the port assumes a link up and the operational mode is set to the Port Serial Control
(PSC) register’s <AN_Duplex> and <AN_FC> values are at the time.

| ;I | Once the other device is replaced by a device that can perform Auto-Negotiation, the

Not Auto-Negotiation is automatically restarted.
ote

If the other device only transmits idles during this extended timer period, the bypass is performed. In
this instance, configuration codes are not idles. Therefore, a regular Auto-Negotiation device does
not allow the bypass to take place.

If the bypass was performed, the port reports this via the Port Status register’s <Bypass_Activated>
bit, together with the Interrupt stating link change. Therefore, management can recognize whether
the link was resumed due to standard Auto-Negotiation or bypass.

9.9 Data Blinder

The MII Serial Parameters (Table 413 p. 419) register’s <DataBlind> bits[21:17] set the time period
during which the port does not look at the wire to decide to defer a pending transmission, due to
receive activity.

9.10 Inter-Packet Gap

The Inter-packet Gap (IPG) is the idle time between the CRC from the first packet to the preamble of
the next packet from the same port. The default (from the standard) is 96 bit times.

|:: | | Marvell does not recommend reducing the IPG setting in violation of the IEEE
standards. Reducing the IPG can improve test scores but can create Ethernet
Note compatibility problems.

Use MII Serial Parameters (Table 413 p. 419) and GMII Serial Parameters (Table 414 p. 420) to set
the IPG size.

9.11 lllegal Frames

For undersized frames (with or without good CRC), the port discards all illegal frames. The frames
are not passed to the CPU, regardless of address filtering, and the appropriate error MIB counters
are incremented. An undersized frame is determined by the Minimum Frame Size.

Oversized frames (greater than the MRU) with or without bad CRC (bad checksum) are forwarded to
the DMA queue with an error summary report in the Rx descriptor.

9.12 Backpressure Mode

Only when the network port is operating in half-duplex, MIl mode will the port implement a
Backpressure algorithm.

The Backpressure algorithm is enabled by setting the Port Serial Control (PSC) register’s
<ForceBPMode> hits[8:7].

For a port in Backpressure mode, the port waits until the medium is idle and then transmits a JAM
pattern for a programmable value of time. To program the period that the JAM pattern is transmitted,
set the <JAM LENGTH> field[1:0]. The IPG between two consecutive JAM patterns (or between the

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 122 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Flow Control

last transmit and the first JAM) is programmed using the <JAM-IPG> bits[6:2]. <JAM LENGTH> and
<JAM-IPG> are set in the MII Serial Parameters register.

When a port in Backpressure mode has a pending packet for transmission, it halts the transmission
of the JAM pattern. The JAM pattern is halted for an IPG value set through the MIl Serial Parameters
registers’ <IPG-JAM_TO__ DATA> bits[11:7]. After the IPG is completed, the port transmits the
packet. If the port remains in Backpressure mode, it resumes the JAM pattern transmission after an
IPG set by the <JAM-IPG> bits, following the packet transmission.

9.13 Flow Control

The port implements the IEEE 802.3 Flow Control in full-duplex mode, including full
Auto-Negotiation.

Auto-Negotiation for Flow Control is enabled for:

m The multiplexed interface

m PHYs that have SMI interface (MIl or GMII PHYs)

The behavior of the port is determined by the value in Ethernet Port Status (PS) (Table 425 p. 427)
<EnFC> bit and Port Serial Control (PSC) (Table 423 p. 424) <ForceFCMode> bit.

The CPU may write to the PSCR <ForceFCMode> bit when Flow Control operation is enabled in
Port Status register <EnFC> bit (which may be result either of Auto-Negotiation resolution for Flow
Control, or manual setting by the CPU to enable Flow Control operation, which is then reflected in
the Ethernet Port Status (PS) <EnFC> bit).

The CPU must trigger the initiation of pause disable transmission when detecting that it cannot keep
up with the received traffic (This is typically done by monitoring the queue filling process).

When the CPU suspects that it may not be able to provide enough resources to the port, it must

trigger the beginning of Flow Control packets by writing 01 value to <ForceFCMode>. When

resources are made available the CPU must again write a 00 value to <ForceFCMode> to trigger

transmission of pause enable packet (see the more detailed description in Section 9.13.2, Pause

Transmit Operation, on page 124. The CPU response time to congestion cases would determine if

and how many packets may be lost on receive.

The value in Ethernet Port Status (PS) <EnFC> bit can be set from the following:

m CPU programming.

m Result of Auto-Negotiation for Flow Control according to IEEE 802.3 standard in all modes —
MIl, and GMII.

When in MIl or GMII modes, with Auto-Negotiation for Flow Control enabled, the port writes to the

relevant advertisement register in the PHY on the following events:

m Exiting from reset.

m Upon link fail detection (Link changed from up to down).

Auto-Negotiation for Flow Control for 1000BASE-X PHY advertises that the port supports Symmetric
Flow Control only according to the IEEE 802.3 standard (section 37.2.3.2).

The advertised ability of Pause support depends on the setting of the Port Serial Control (PSC)
register’s <Pause_Adv> bit[4] as follows:

m When set, the port advertises symmetric capability for Pause.

m When reset, the port advertises No Pause capability.

9.13.1 Pause Receive Operation

When the port receives a Pause packet, it avoids transmitting a new packet to the port for the period
of time specified in the received Pause packet.

The pause quantum is 512 bits regardless of the operation speed or the duration of the slot time.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 123

—

= 88F5182
M ARVELL® UserManual

A received packet is recognized as Flow Control if it was received without errors and is one of the
following:

= DA = 01-80-C2-00-00-01 and type=88-08 and MAC_Control_Opcode=01.

A packet received that is identified as a Pause packet is always discarded, even if the Pause
function is disabled.

9.13.2 Pause Transmit Operation

For enabling Pause Transmit operation or either enabling or disabling the Ethernet Port Status (PS)
<EnFC> bit must be in the active state.

It is the CPU responsibility in sensing that packets are in danger of being dropped by the receive
port, according to the dynamic availability of resources. One way of doing it is monitoring how much
of the descriptor chain is filled up by the port and how much is left. Another aspect is memory
bandwidth, which is allocated to the port via the crossbar Mbus SDRAM arbiter to avoid bandwidth
shortage for the gigabit port.

| ;] | This mechanism does not provide hardware guarantee of zero frame-loss, as it

Not depends on CPU functionality in triggering it dynamically.
ote

When the CPU suspects that it may not be able to provide enough resources to the port, it must
trigger the beginning of Flow Control, pause-disable packets transmission by writing 01 value to the
PSCR <ForceFCMode> bits [6:5]. The transmit port will schedule transmission of a pause-disable
frame (timer=0xFFFF) at the next possible frame boundary and will automatically retransmit it at
least every 4.2 msec (GMIl), 42 msec (MIl at 100 MB), or 420 msec (Mll at 10 MB) as long as the
value in the <ForceFCMode> field remains 01.

The other link partner is expected to stop packet transmission upon receiving the Flow Control
disable packets, and the retransmission of them guarantees refreshing that indication continuously.

When resources are made available, the CPU must write a 00 value to the PSCR <ForceFCMode>
bits[6:5]. This will trigger transmission of a single pause enable packet (timer = 0x0000) that enables
the other link partner to resume packet transmission.

When transmitting a pause packet, the port address is put into the source address field. The 48-bit
port address is located in the MAC Address Low and the MAC Address High registers.

| ;] | When the link goes down, the PSCR <ForceFCMode> bits[6:5] are always reset to 00

(No Pause disable frames are sent).
Note

9.14 MII/GMII Serial Management Interface (SMI)

The port MAC contains a Serial Management Interface (SMI) for MIl or GMII compliant PHYs.

This allows control and status parameters to be passed between the port and the PHY (parameters
specified by the CPU) using one serial pin (MDIO) and a clocking pin (MDC), reducing the number of
control pins required for PHY mode control. Typically, the port continuously queries the PHY device
for the link status, without CPU intervention. The PHY addresses for the link query are
programmable in the PHY Address register.

The CPU can write/read to/from all PHY addresses/registers. The SMI allows the CPU to have direct
control over an MIl or GMII compatible PHY device via the SMI register. This control allows the

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 124 Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
MIlI/GMII Serial Management Interface (SMI)

driver software to place the PHY in specific modes such as Full-Duplex, Loopback, Power-Down, or
1000-speed selection. It also helps control the PHY device’s Auto-Negotiation function, if it exists.
The CPU writes commands to the SMI register and the port reads or writes control/status
parameters to the PHY device via a serial, bi-directional data pin called MDIO. These serial data
transfers are clocked by the device MDC clock output.

9.14.1 SMI Cycles

The SMI protocol consists of a bit stream that is driven or sampled by the port on each rising edge of
the MDC clock. The SMI frame, bit-stream format starts with PRE and ends with IDLE. Its various
steps are described in Table 40.

Table 40: SMI Bit Stream Format

PRE ST OoP PHYAd RegAd TA Data IDLE
READ 1.1 01 10 AAAAA RRRRR Z0 D.D(16) z
WRITE 1.1 01 01 AAAAA RRRRR 10 D.D(16) Z

The column headings in Table 40 are defined below:

PRE Preamble At the beginning of each transaction the port sends a sequence of 32
contiguous logic 1 bits on the MDIO, with 32 corresponding cycles on the
MDC, to provide the PHY with a pattern it can use to establish
synchronization.

ST Start of Frame Start-of-Frame pattern of 01.
OoP Operation Code 10 - Read
01 - Write

PhyAd PHY Address 5-bit address of the PHY device (32 possible addresses). The first PHY
Address bit transmitted by the port is the MSB of the address.

RegAd Register Address 5-bit address of the PHY register (32 possible registers in the PHY).
The first register address bit transmitted by the port is the MSB of the
address. The port always queries the PHY device for status of the link
by reading register 1, bit 2.

TA Turn Around Turnaround time is a 2-bit time spacing between the <RegAd> field
and the <Data> field of the SMI frame, to avoid contention during a
read transaction. During a read transaction the PHY must not drive
MDIO in the first bit time and drive 0 in the second bit time. During a
write transaction the port drives a 10 pattern, to fill the TA time.

Data Data Data field is 16 bits long. The PHY drives the data field during read
transactions. The port drives the data field during write transactions.
The first data bit transmitted and received is bit 15 of the PHY register
being addressed.

IDLE Idle IDLE condition on MDIO is a high impedance state. The MDIO driver is
disabled and the PHY must pull-up the MDIO line to a logic 1.

9.14.2 SMI Accelerated Modes

The 88F8x5x support faster clock speed modes. When connecting the device to other Marvell
devices, these modes enable a higher utilization of the SMI bus. In these modes, the MDC clock
output rate can be set to 10.3 MHz or 20.7 MHz, by dividing the TCLD by 16 or by 8, respectively.
Changing the MDC clock rate is done by updating Ethernet Unit Reserved (EU) (Table 399 p. 412)
at offset 0x72014.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 125

®

—

= 88F5182

M ARVELL® UserManual

9.14.3

9.15

SMI Timing Requirements

When the MDIO signal is driven by the PHY, it is sampled by the port synchronously with respect to
the rising edge of MDC. Per the IEEE 802.3 specification, the clock to output delay from the PHY, as
measured on the device pads, shall be a minimum of 0 ns and a maximum of 300 ns, as shown in
Figure 24. Further, when the MDIO signal is driven by the device, there is a minimum of 10 ns of
setup time and minimum of 10 ns of hold time as shown in Figure 25.

Figure 24: MDIO Sourced by PHY

\ / \ vih_

MDC \ / \ .
7 __ / Vil
\ \ / Vih .
MDIO X e
/ /\ Vilax

Ons MIN
300ns MAX

Figure 25: MDIO Sourced by Device

Vih_ .

MDC)
Vil o
Vih_.

MDIO .
Vllmax

“—> —>

10ns 10ns
MIN MIN

Link Detection and Link Detection Bypass
(ForceLinkPass)

Typically, the port continuously queries the PHY device for its link status, without CPU intervention.
The PHY address used for the link query is determined by the PHY Addresses register, and it is
programmable, where the default value is 8 (out of a possible 32 addresses). The port reads register
1 from PHY and updates the internal link bits according to the value of bit 2 of register 1. In the case
of “link is down” (bit 2 is 0), that port enters link test fail state. In this state, all of the port’s logic is
reset. The port exit from link test fail state only when the “link is up”, bit 2 of register 1 is read from
the port's PHY as 1.

The port offers the option to disable the link detection mechanism by forcing the link state of the
interface to the link test pass state. This is done by forcing the register bit, and then the link status of
the port remains in the “link is up” state regardless of the Interface-PHY’s link bit value. The link
status of the Interface-PHY can be read through the SMI from the PHY devices (register 1, bit 2).

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 126

Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Network Management Interface Counters

9.15.1 Force Link_Fail

The PSCR register’s <ForceLinkFail> bit (bit 10) has the default value of forcing the link detection on
each port to link down. The user must set this bit, to get the true link status of the port and to enable
the port link indication to go up.

The user must not program the <ForceLinkFail> bit and the <Force_Link_ Pass> bit to be set at the
same time.

9.16 Network Management Interface Counters
The port incorporates a set of management counters.

For a complete description refer to Appendix A.9.3, Port MIB Counter Register, on page 441.

9.17 Port MIB Counters

The MAC MIB Counters provide the necessary counters that support MAU, IEEE 802.3 and
EtherLike MIB. Each port has a set of counters that reside in consecutive address space. Some
counters are 64 bits wide.

The counters are meant to provide management software to support:
IEEE 802.3 DTE Management objects
Ethernet-like interface MIB: RFC 2665

Interface MIB: RFC 2863
Remote Network Monitoring (RMON) groups 1-4: RFC 2819

EI The MAC MIB counters are not intended to be used for Bridge MIB nor for SMON MIB.
Note

9.17.1 Definitions

The following table summarizes the terms used in the definition of the counters.

Table 41: Definitions for MAC MIB Counters

Term Definition
Collision Event A collision has been detected before 576-bit times into the transmitted packet after GE_TXEN
is asserted.

Relevant to 10 Mbps and 100 Mbps speeds in half-duplex mode only.

Late Collision Event A collision has been detected after 576-bit times into the transmitted packet after GE_TXEN.
Relevant to 10 Mbps and 100 Mbps speeds in half-duplex mode only.

Excessive Collision When a packet to be transmitted suffers from 15 consecutive collision events, therefore, it
Event ought to be dropped according to the IEEE 802.3 specification.
Relevant to 10-Mbps and 100-Mbps speeds in Half-Duplex mode only.

MRU Maximal Receive Unit: A programmable parameter that sets the maximal length of a valid
received packet.

Rx Error Event The Receive Error signal/symbol was asserted while a frame is received.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 127

—
=
—

M ARVELL®

88F5182
User Manual

Table 41: Definitions for MAC MIB Counters (Continued)

Term

CRC Error Event

Undersize packet

Fragment

Oversize packet

Jabber

Tx Error Event

Bad frame

MAC Control Frame

Flow Control Frame
Good Flow Control
Frame

Bad Flow Control

Frame

Good frame

Doc. No. MV-S103345-01 Rev. C

Page 128

Definition

This event occurs whenever an Ethernet frame is received and the following conditions are
satisfied:

1. Packet data length is between the Minimum Frame Size - and the MRU byte size inclusive
(that is, it is a valid packet data length according to the IEEE standard).

Packet has an invalid CRC.

Collision Event has not been detected.

Late Collision Event has not been detected.

Rx Error Event has not been detected.

aprwn

An Ethernet frame satisfying all of the following conditions:
Packet length is less than Minimum Frame Size bytes.
Collision Event has not been detected.

Rx Error Event has not been detected.

Packet has a valid CRC.

N

An Ethernet frame satisfying all of the following conditions:

1. Packet data length is less than 64 bytes, OR a packet without a Start Frame Delimiter
(SFD) and the packet is less than 64 bytes in length.

2. Collision Event has not been detected.

3. Rx Error Event has not been detected.

4. Packet has an invalid CRC.

An Ethernet frame satisfying all of the following conditions:
Packet length is more than the MRU byte size.
Collision Event has not been detected.

Late Collision Event has not been detected.

Rx Error Event has not been detected.

Packet has a valid CRC.

agrwpdpE

n Ethernet frame satisfying all of the following conditions:
Packet data length is greater than the MRU.
Packet has an invalid CRC.
Rx Error Event has not been detected.

wN e >

An internal error event in the transmit MAC.
This is a very rare situation and when it happens, it means that there the system is
misconfigured.

An Ethernet frame that has one of the following conditions met: CRC Error Event,
Undersize, Oversize, Fragments, Jabber, Rx Error event and Tx Error Event.

An Ethernet frame that is not a bad frame and has a value of 88-08 in the
EtherType/Length field.

A MAC Control Frame with an opcode equal to 00-01.
A Flow Control frame with:

1. MAC Destination equal to 01-80-C2-00-00-01
2. 64-byte length

All Flow Control frames that are not good Flow Control frames

An Ethernet frame that is not a bad frame NOR a MAC Control frame

Copyright © 2008 Marvell

Document Classification: Proprietary Information April 29, 2008, Preliminary

Gigabit Ethernet Controller Interface
Port MIB Counters

The following figures illustrate the terms defined above:

Figure 26: Ethernet Frame Classification

Bad Frame

Good Frame

Unsupported
Opcode

Broadcast
Good Frame

Multicast
Good Frame

Unicast Good
Frame

Bad Flow
Control

Good Flow
Control

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 129

®
I;% 88F5182

M ARVELL®

User Manual

Figure 27: Bad Frame Procedure

Fragments
Incremented

Undersize
Incremented

Jabber
Incremented

Oversize
Incremented

Doc. No. MV-S103345-01 Rev. C

Page 130

Collision
Incremented

Frame Received

Yes

MACRCcVETrr
or
Incremented

Collision

Yes Rx Error

CRC Error
incremented

Event

No

Yes

Document Classification: Proprietary Information

CRC Event

No

Packet is NOT a
bad packet

Copyright © 2008 Marvell
April 29, 2008, Preliminary

9.17.2

Copyright © 2008 Marvell

Gigabit Ethernet Controller Interface
Port MIB Counters

Per Port Counters

The counters initialize to 0 after reset. The counters are read only. Upon counter read, it is reset
again to 0.

Most counters are 32 bits. The Good Bytes received and Good Bytes Sent are 64-bit counters that
are read in two accesses— low address first and high address next (counter is reset upon read from
high address).

Refer to PHY Address (Table 395 p. 410) for the address offsets of all the counters for the port.
Within the counters block, the counter offset is in the address bits[6:0].

The following table lists the counters maintained per port, with the address field providing the
address offset of each counter from the base address of the counters for that port.

In addition to the per port counters, in the MAC MIB Counters (Table 448 p. 441) register, there are
some additional counters that count filtered frames for reasons like MAC address lookup results,
called Port Overrun Frame Counter (POFC) (Table 436 p. 434) and Port Rx Discard Frame Counter
(GEDFC) (Table 435 p. 434) registers. In conjunction with the counters block they provide total
frames received information.

Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 131

—

= 88F5182

M ARVELL® UserManual

10

10.1

USB 2.0 Interface

The 88F5182 supports two USB 2.0 ports each with an embedded USB 2.0 PHY.

The USB 2.0 interface can act either as a USB high-speed peripheral (device) or as a USB host
controller. It is fully compliant with the Universal Serial Bus Specification, Revision 2.0 (USB 2.0).

The USB 2.0 interface contains a single dual-role controller (aka USB controller) and a bridge,
connecting the controller to the internal Crossbar interface (aka USB bridge).

The USB 2.0 port contains an embedded USB 2.0 PHY (aka USB PHY), supporting both host and
peripheral modes.

Functional Description

The USB 2.0 interface supports the following features:

Host Controller EHCI compliant as a host.
As a host, supports direct connection to all peripheral device types—Low Speed
(LS), Full Speed (FS), High Speed (HS)

Peripheral USB 2.0 compliant peripheral controller.
As a peripheral, connecting to all host types (HS, FS) and hubs.
Four independent endpoints support control, interrupt, bulk and isochronous data
transfers.

Embedded PHY 480 Mbps High Speed (HS)/ 12 Mbps FS, FS only and LS only 1.5 Mbps serial data
transmission rates.
SYNC/EOP generation and checking.
Data and clock recovery from serial stream on the USB.
NRZI encoding/decoding with bit stuffing/unstuffing.
Bit stuffing/unstuffing; bit stuff error detection.
Holding registers to stage transmit and receive data.
Supports USB 2.0 Test Modes.
Ability to switch between FS and HS terminations/signaling.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 132

Document Classification: Proprietary Information April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator

11 Cryptographic Engines and Security
Accelerator

The 88F5182 integrates hardware-based cryptographic engines and a security accelerator. These
engines were designed to perform time-consuming cryptographic operations such as
AES/DES/3DES encryption and MD5/SHA1 authentication, to reduce CPU packet processing

overhead.

There are four cryptographic engines, each operating independently. They implement the following
algorithms:

Encryption DES (ECB and CBC mode) and Triple DES (ECB and CBC mode, EDE and EEE)
Encryption AES128/128, AES128/192, AES128/256.

Authentication SHA-1 and MD5

The following acronyms, abbreviations, and definitions are used in this section.

Table 42: Acronyms, Abbreviations, and Definitions

Acronym Definition
AES Advanced Encryption Standard
AES128/128 128 data bits AES with 128-bit key width
AES128/192 128 data bits AES with 192-bit key width
AES128/256 128 data bits AES with 256-bit key width
Block/data Block of 512 bits in the Authentication engine
CBC Cipher Block Chain
CFB Cipher Feedback
DES Data Encryption Standard
3DES Triple Data Encryption Standard
ECB Electronic Code Book
EDE Encryption Decryption Encryption
EEE Encryption Encryption Encryption
\ Initial Vector / Initial Value
MD5 Message Digest 5
OFB Output Feedback
SHA-1 Secure Hash Algorithm 1
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 133

—

= 88F5182
M ARVELL® UserManual

Table 42: Acronyms, Abbreviations, and Definitions (Continued)
Acronym Definition

WO...W15 Designates the 16 words in an authentication input data block; WO is the
first word and W15 is the last word.

WORD 32-bit

11.0.1 Cryptographic Engine Features

The cryptographic engines support the following features:

m Authentication in the MD5 or SHA algorithm (selectable by the user).
m Authentication Continue mode: Enables chaining between blocks.

m Authentication Automatic Padding mode.
n

Encryption and Decryption in Single DES, Single (ECB), or Block (CBC) mode; or 3DES, EEE,
or EDE mode (selectable by the user).

DES write pipeline.

Optimal external update of Authentication and Encryption (in CBC) initial values, enabling
flexibility of use: Multi-packet calculation and sharing between resources.

Byte Swap support for Data input and initial values.

Byte Swap support for DES/3DES and AES data output.

Automatic Engine activation when the required data block is loaded. (Saves write cycles.)
Authentication and encryption can be performed simultaneously.

Authentication and encryption termination interrupts.

Supports DES OFB and CFB modes (with additional software).

AES encryption and decryption. Completely separate engines that can work simultaneously.

11.0.2 Security Accelerator Features
The security accelerator supports the following features:
m Performs a complete over-the-packet operation with no software intervention.
m Supports two consecutive sessions, allowing pipelining in packets processing.
m Supports four types of operation:
* Authentication only (MD5 / SHA-1 / HMAC-MD5 / HMAC-SHA1)
* Encryption/Decryption only (DES / 3DES / AES - both ECB and CBC)
* Authentication followed by Decryption/Encryption
* Decryption/Encryption followed by Authentication

11.0.3 Using the Cryptographic Engines

The cryptographic engines can be accessed by the security accelerator or by the host?, by writing
and reading to specified addresses in the engine.

11.0.3.1 Commands and Control

The engines' modes of operation (AES, DES, 3DES, and SHA) and the endianness of the input data
are controlled by the host via four specified command registers:

m SHA-1/MD5 Authentication Command Register
s DES Command Register

1. The word “host” is used as a generic term, representing the agent that controls the operation of the cryptographic
engines (CPU or security accelerator). While the accelerator is working, the host cannot work with the cryptographic
engines and vise versa.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 134 Document Classification: Proprietary Information April 29, 2008, Preliminary

11.0.3.2

11.0.3.3

11.0.3.4

11.0.4

11.1

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

m AES Encryption Command Register
m AES Decryption Command Register

(see Appendix A.11, Cryptographic Engine and Security Accelerator Registers, on page 451).
These registers also contain flags that are used as status indicators to the host.

The engines provide interrupts that are set when an operation is completed (see Table 519,
Cryptographic Engines and Security Accelerator Interrupt Cause Register, on page 468).

Input Data

The Encryption engines operate on data blocks of 64 bits or 128 bits, while the Authentication
engine requires a block of 16 words (512 bits) as input.

The input data is loaded by writing to data registers.

The engines, excluding DES, do not support multi-tasking. When a data block is written to one of the
engines, the host must wait until this engine finishes the calculation before it writes the next input
data block.

The engines also require cryptographic parameters such as keys and initial values, according to the
mode of operation used. These are provided by writing to specific registers.

Both the Encryption engine and the Authentication engine support byte swap of input data.

Output Data

The Encryption engines return a cipher/decipher data block of 64 or 128 bits. The engines support
byte swap of their output data.

The Authentication engine returns four or five words that are the hash signature of the input data
block.

The output data is accessed through specific registers in the engines.

Principle of Operation

When a host wants to perform cryptographic operations, it writes the cryptographic parameters

(IV, keys, etc.) and the command to be carried out in the registers. Then it writes the data to be
processed (in the data registers). This triggers the engine, which starts the processing automatically,
after the required amount of data has been written. When the engine finishes the cryptographic
calculation, it sets a termination bit in one of the command registers and activates an interrupt to
notify the host that the operation is finished. The host can then read the result from the engine’s
registers.

Using the Security Accelerator

The accelerator is activated by the CPU. It works on top of the cryptographic engines, setting them
to work in the required manner. The entire operation of the accelerator is performed in the local
SRAM of the security accelerator. The CPU copies the packet to be processed into the local SRAM
of the security accelerator. (The IDMA engine can be used by the CPU for this purpose.)The CPU
then prepares a descriptor (see Section 11.2.4 "Security Accelerator Descriptor Data Structure")
stating the required operation and activates the accelerator. The accelerator reads the descriptor,
sets up the engines, and starts feeding the packet data into the engine, one data block at a time. It
waits for completion, reads the data from the engine, and stores it in the local SRAM of the security
accelerator. This continues until the entire packet has been processed.

Cryptographic Engines Operation
The unit combines four separate engines:
m DES encryption/Decryption

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 135

®
I;% 88F5182

M ARVELL® UserManual

= AES128 Encryption

m AES128 Decryption

m Authentication MD5/SHA

Each of these engines has separate registers for data, control, and operation modes. Address

allocation is specified in Table 465, Cryptographic Engine and Security Accelerator Register Map, on
page 451.

11.1.1 Authentication
To activate the authentication process, the host performs the following, steps:
1. Verify the termination bit in the Authentication Command register.
The host must read the register, to verify that the engine is not in the middle of a calculation pro-
cess. Writing in the middle of a calculation results in erroneous data.
After reset, the termination bit (bit [31]) is set. Any write performed by the host to the Authentica-
tion engine resets the termination bit.
2. Write operational mode and endianness fields of the SHA-1/MD5 Authentication Command
Register (see Table 487 on page 458). (Optional if no change is needed.)
3. Write initial values:
Required only if multiple packets are processed simultaneously.
Externally written initial values are valid only if the <Mode> field in the SHA-1/MD5
Authentication Command Register (Table 487 p. 458) is selected.
In SHA, the initial value is 5 words long and in MD5 it is 4 words long. The addresses of the
IV/digest registers are specified in Table 482, SHA-1/MD5 Initial Value/Digest A Register, on
page 456.
The host may write to any of these registers. Initial values registers that are not written contain
the digest from the previous calculation.
4. Write data words.
| ;I | The host may change the value of the Command register during the process of writing
Not the data when it is necessary to swap only part of the data.
ote
SHA/MDS5 algorithms work in 512-bit chunks, equal to 16 words. There are two ways to write the
data words to the engine—Write cycles to Data In register, or Write cycles to the Data In register and
to Byte Count registers.
11111 Write Cycles to Data In Register
The host must perform 16 write cycles—first to WO, then to W1 through W15.
11.1.1.2 Write Cycles to the Data In Register and to Byte Count Registers
This type of access is preferred where a packet is small (i.e., less than 14 words) or for the last
chunk of a packet whose size is less than 14 words. In these cases the algorithm requires a zero
padding to 14 words, in addition to the 2-word padding of the bit count needed in single/last chunks.
This requires successive writes of full zero words.
In this type of access, the writing of zero padding is skipped, thus less than 16 write accesses
activate the engine.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 136

Document Classification: Proprietary Information April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

This access is performed as follows:

1.

The host writes between 0 and 13 words to the Data In register. The write to the Data In register
is performed until the word containing bit N+1 of the data, where N is the place of the last bit of
data in the chunk. The last word written must be padded with one bit of 1 and then zeros until
the completion of the 32-bit word.

The host writes the lower part (MD5) or the higher part (SHA) of the bit count value to the
SHA-1/MD5 Bit Count Low Register (Table 480 p. 456)—word 14 (see Table 43).

The host writes the higher part (MD5) or the lower part (SHA) of the bit count value to the
SHA-1/MD5 Bit Count High Register (Table 481 p. 456)—word 15 (see Table 43). After this
write, the engine starts working automatically, and all words of the data chunk from the last word
written to the Data In register until word 14 are considered as zeros.

Table 43:Authentication of a Data Chunk

Less than 16-Word 16-Word
word 0 word 0
word 1 word 1
word 13 or less word 13
bit count low word 14
bit count high word 15

Poll the Authentication Command register or wait for the interrupt.
After the engine has been loaded with the data chunk or after a write to the two Bit Count
registers, the engine starts working automatically.

When the <Termination> bit—bit[31] in the SHA-1/MD5 Authentication Command Register
(Table 487 p. 458) is 1, this is an indication for the host that the engine has finished the
calculation process and the digest is ready.

The host can then poll the <Termination> bit or wait for the ZInt0 interrupt—bit 0 in the
Cryptographic Engines and Security Accelerator Interrupt Cause Register (Table 519 p. 468).
This interrupt is activated on the rising edge of the <Termination> bit. To clear the interrupt, the
host must write a 0 to it. Writing a 1 has no effect.

Read result

Once the <Termination> bit has been asserted, the host can read the digest. The digest length
is 4 words for SHA-1 or 5 words for MD5. These words are stored in the 1V/Digest registers (see
Table 482 on page 456 through Table 486 on page 457).

After reading the result, the host can immediately start the write command again for initial
values and data or just for data.

Figure 28 shows a typical authentication flow for a packet.

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 137

®
I;% 88F5182

M ARVELL® UserManual

Figure 28: Typical Authentication Flow for a Packet

Is termination bit set?

Write command
(also set command
to initial mode)

v

Write Initial Values #

i< Iy No Last Data Chunk ?

Yes
Write Data Word
in Data Chunk

Write Data Word
in last Data Chunk

v

Last Data Word ?

16 words written ?

Is termination bit set ?

Write Byte Count
of last Data Chunk

Write command
(also set command
to continue mode)

Is termination bit set ?

Read Digest results

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 138 Document Classification: Proprietary Information April 29, 2008, Preliminary

11.1.2

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

DES Encryption/Decryption

The DES encryption algorithm complies with the DES standard, as described in FIPS PUB 46-2.
The engine implements two different modes:

ECB A direct application of the DES standard to encrypt and decrypt data

CBC An enhanced mode of ECB that chains together blocks of cipher text. The chain’s glue is the
DES IV (Initial Value) register (see Table 470 on page 453 and Table 471 on page 453).

Two other modes—CFB and OFB—can be implemented by the engine, however additional software
is required.

The engine implements two triple DES (3DES) modes, as described in RFC 1851:

m EEE

m EDE

The 3DES modes can work with three different keys for high security and can be combined with
ECB or CBC modes.

All the modes are reciprocal, i.e., they decipher or cipher data.

Encryption/Decryption calculation time is nine cycles in DES mode and 25 cycles in 3DES mode.
This is without taking into consideration the read and write cycles associated with writing the input
data/key and reading the result.

To activate the Encryption engine, the following steps are required:

1. Verify termination bits in the DES Command Register.
The host must read the register, to verify that the engine is not in the middle of a calculation
process and that the engine’s parameters (DES operation modes and either the DES key or the
3DES keys) can be updated.

In the initial operation, it is always necessary to write the DES key or the 3DES keys and
possibly to write an operational mode other then the default operational mode. In that case,
before the engine’s parameters are written, the <AllTermination>—bit [30] in the DES Command
Register (Table 478 p. 455)—must be set.

When the <Termination> bit (bit [31] in the DES Command Register) is set, a 64-bit DES data
block can be written to the engine, but this does not necessarily mean that parameters can be
updated. Writing to the engine de-asserts this bit.

However, when the <AllTermination> bit [30] is set, a DOUBLE 64-bit DES data block can be
written to the engine. In addition, when this bit is set, the engine’s parameters can be updated.

The DES engine operates on a pipeline principle (see Figure 29.)

The host writes to the engine when bit [29] is set. When a result is ready, the host must read it,
to enable the engine to process the next data in the pipeline. When bit [29] is set, the host can
write one data block to the engine.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 139

—
=
—

M ARVELL®

88F5182
User Manual

Figure 29:DES Engine Pipeline

Data In

Stag

DES Engine
Data In Engine Data Out
D1 — —
e

D2 D1 —

—_
— D2 D1
D3 D2 —

—_—
— D3 D2
D4 D3 —

e
— D4 D3

Note: A read of Dataout Low resets bit[29].

Meaning of bits [31:30] and their possible states.:

Bit 31

Doc. No. MV-S103345-01 Rev. C
Page 140

Bit 30

Description

Engine is busy.
Engine is ready.

First data block waiting for
read; pipeline is full.

Engine completed
calculations; pipeline is
empty.

Document Classification: Proprietary Information

Data Out

Bit Bit Bit
31 30 29

1 1 1
0 0 1
0 0 1

g Host reads
1 0 1
0 0 0

~—Host reads
1 0 1
0 0 0

~—Host reads
1 0 0

Number of Data
64-Bit Blocks
That Can Be
Written

1—only if bit 29 is set
2
1—only if bit 29 is set

Can Engine
Parameters
Be Updated?

No
Yes
No

Yes

Copyright © 2008 Marvell

April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

2. Write operational mode and endianness for fields in the DES Command register:

Direction Encryption or decryption

Algorithm Single DES or 3DES

Triple DES mode EEE or EDE

Chain ECB or CBC

Data byte swap Similar to swapping performed in the Authentication engine.

IV byte swap Swapping of data written to the DES IV register. Similar to data swap.

Data out byte swap These bits control byte swap of the cipher/decipher output result.

3. Write the keys.
Each key is a 64-hit block. Writing a single key requires two write operations.

In single DES mode, a write to a single key must be performed.The key used in DES mode is
the KEYO register.

In 3DES modes, it is recommended to write to three different keys—KEYO, KEY1, and KEY2
registers.

Since keys are only changed occasionally, this step is not always necessary.

4. Write the initial value (1V)
This step is necessary only in the DES/3DES CBC modes. A 64-bit block must be written to the
IV register. In CBC, the IV value is XORed with the Data_In. The result is used as the input to
the cipher/decipher machine.
Writing the IV register requires two write operations—one to IV_LOW and the other to IV_HIGH.
In 64-bit mode, a single write operation is required.

5. Write blocks for the 64-bit data
DES encryption requires a 64-bit block of input data, loaded by writing to one of the DES Data

Buffer registers (see Table 468, p. 453 or Table 469, p. 453). One or two data blocks can be
loaded, according to the engine status (see example below).

If a data block is shorter than 64 bits, the specification requires zero padding to 64 bits.

NOTE: If the next block to be processed uses the same cryptographic parameters (i.e., the
same keys and modes) and if the IV is the output data of the previous block, the host writes only
the DES Data Buffer registers (see Table 468, p. 453 and Table 469, p. 453). This is useful
when it is necessary to encrypt a message consisting of multiple 64-bit blocks. In this case it is
efficient to use the DES pipeline option and to write two blocks at once, as specified in the
example below.

The DES machine starts working automatically when a 64-bit data block is written to it, or when
there is data in its pipeline, and the previous result has been read.

Operation starts after the host writes to the DES data buffer addresses. The host must first write
to the DES data in/out low address and then to the DES data buffer high address, as shown in
the following example.

The data block to encrypt is 0x1122334455667788.
The host writes 0x55667788 to address 0xDD70.
The host writes 0x11223344 to address 0xDD74.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 141

—

= 88F5182
M ARVELL® UserManual

Results:
Byte DES Data Buffer Register
Swap Actual Data That Will Be Encrypted
0 1122334455667788
1 4433221188776655

NOTE: Other writes to addresses 0xDD70/0xDD74 will cause unexpected results!

6. Poll the DES Command Register (Table 478 p. 455) or wait for the interrupt.

After the engine is loaded with one 64-bit block, it starts working automatically. The host must
not write anything to the engine until the <ReadAllow> bit[29] is set.

The host must poll the <Termination> bit[31] in the DES Command Register. When the bit is set
to 1, this is an indication to the host that the engine has finished the calculation process and the
result is ready.

The host may write one data block each time, or it may perform consecutive writes of two data
blocks:

If the host wrote one data block each time:

The result of the data block is ready and no more data is in the engine pipeline. Bit [30]
<AllTermination> is set and engine parameters can be updated.

If the host performed consecutive writes of two data blocks:

When the first data block result was ready, the <Termination> bit[31] and the <ReadAllow>
bit[29] were set and the engine had the second data in the pipeline. However the
calculation could not start until the host had read the result of the first data via Data Out
register (read the Data High before the Data Low). Here bit [30], <AllTermination>, was not
set.

Once the first data result was read, the <ReadAllow> bit[29] was reset and the engine
started calculation of the second data. The host could then write one data block (the third
block) to the engine. This was indicated by <ReadAllow> bit[29] (see Figure 29).

When the second data block result was ready, <Termination> bit[31] was set. The engine
had completed the second data calculation, the pipeline was empty, and the
<AllTermination> bit [30] was also set. Once the data result was read, the host could alter
the DES parameter and then write two data blocks.

The ZIntl interrupt is set every time the <AllTermination> bit—bit[30] in the DES Command
Register (Table 478 p. 455)—changes from O to 1.

The ZInt4 interrupt is set every time the <Termination> bit—(bit[31] in the DES Command
Register)—changes from 0 to 1.

After the interrupt occurs, the host writes 0 to the relevant interrupt bit in the Cryptographic
Engines and Security Accelerator Interrupt Cause Register (Table 519 p. 468) to reset it.
Writing 1 has no effect.

7. Read DES result.
Once a termination bit has been asserted, the host may read the result. The result of the
encryption (or decryption) is stored in the DES Data In/Out register.

Two read operations are required to read the result—the first from address 0xDD7C and the
second from address 0xDD78.

Byte swap bits have no effect on reads, i.e., the engine does not perform any endianness
change on the result. To perform an endianness change, use the <OutByteSwap> field in the
DES Command Register (Table 478 p. 455)).

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 142 Document Classification: Proprietary Information April 29, 2008, Preliminary

8.

Read keys and IV.

Cryptographic Engines and Security Accelerator

Cryptographic Engines Operation

It is possible to read the key values and IV value at any time by accessing the appropriate
registers. In chain modes (CBC), the IV register is changed by the machine at the end of every
DES calculation cycle. In this situation, the IV register is loaded with the calculation result, so it
should have the same value as the DES Data Out register (see Table 466 on page 452 and

Table 467 on page 453).

Figure 30 illustrates the typical DES/3DES packet encryption flow.

Figure 30: Typical DES/3DES Packet Encryption Flow

AES128 Encryption

Is termination bit set? H

Yes

<

A J

Write Des operation mode

Read engine result
Hi register before Lo

v

Write KeyO register (for
3DES Keyl and Key2 are
also recommended)

A J

Write Init Value
(relevant for CBC mode
only)

v

Write Data Block (64 bits)
or Two Data Blocks

(pipeline mode only)

Y

Is
termination bit set
(for pipeline: is -——
readallow
bit set?)

Yes

Y

Write Next data block

End of Packet ?

Is
termination bit set
(for pipeline: is
readallow
bit set?)

Read Engine Result
Hi register before Low

No

Is Alltermination bit set?

v

Write Next data block

Read engine result
Hi register before Lo for
pipeline mode

DES engine finished

The AES128 Encryption engine complies with the AES standard, as described in the FIPS standard.
This engine performs encryption only. Decryption is performed by the AES128 Decryption engine.

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information Page 143

—

= 88F5182

M ARVELL® UserManual

The engine implements the AES algorithm on a 128-bit data block on three possible Key Length
modes:

= 128-bit mode

= 192-bit mode

m 256-bit mode

Encryption calculation time is 20 cycles, without taking into consideration the read and write cycles
associated with writing the input data/key and reading the result.

To activate the AES Encryption engine, the following steps are required.

1. Verify the termination bit in the AES Encryption Command Register (Table 500 p. 461).

The host must read the register, to verify that the engine is not in the middle of a calculation
process. Writing in the middle of a calculation will result in erroneous data. Unless the host
made a write to the engine before, the <Termination> bit (bit [31] in the AES Encryption
Command Register must be set (This is also true after reset.).

Any write that the host performs to the AES Encryption engine resets the <Termination> bit.
2. Write operational mode and endianness for fields in the AES Encryption Command Register.
* Key Length mode—128, 192 or 256 hit

» Data byte swap. This is similar to the swapping performed in the Authentication engine.
See Section 11.0.2 for further details.

» Data out byte swap: These bits control byte swap of the cipher output result.
3. Write key.

The AES key is pliable, according to the Key Length mode selected. It may be a 128-, 192- or
256-bit block. Writing a single key requires four, six, or eight write operations.

With the key maximum length 256-bit block, the block is structured from eight words. Each word
is a column in the AES Cipher Key block:

AES key column O AES key column 1 AES key column 2 AES key column 3
Thus there are eight AES encryption key registers, each of them containing a column of the
AES cipher key block.

Commonly a 4-word key is used. In this case the host must write to the Key Column 0, 1, 2, and
3 registers.

Since keys are only changed occasionally, this step is not always necessary.

4. Write block for the 128-bit data.
AES encryption requires a 128-bit block of input data, loaded by writing to the AES Encryption
Data In/Out register.
If a data block is shorter than 128-bits, the specification requires zero padding to 128 bits.

NOTE: If the next block to be processed uses the same key; the host writes only the AES Data
In/out registers (seeTable 488 on page 459 through Table 491 on page 460). This is useful for
encrypting a message consisting of multiple 128-bit blocks.

The AES machine starts working automatically when a 128-bit data block is written to it (i.e.,
operation starts after the host writes to all the AES data in/out addresses).

This data is a 128-bit block, structured from four words. Each word is a column in the AES
Cipher Data block:

AES Data column 0 AES Data column 1 AES Data column 2 AES Data column 3
(0XDDAC) (0xDDAS) (OXxDDA4) (0XxDDAO)

Thus there are four AES Encryption Data In/Out registers, each of them containing a column of
the AES cipher block.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 144

Document Classification: Proprietary Information April 29, 2008, Preliminary

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

Upon writing to all these registers (order does not matter), the AES cipher machine
automatically starts working, as shown in the following example:

The data block to encrypt is 0X9900AABBCCDDEEFF1122334455667788.
This data is a 128 bit block, structured from four words.
Each word is a column in the AES Cipher data block.
The data must be loaded to the cipher machine as follows:
Write 0x55667788 to address OxDDAO.
Write 0x11223344 to address OxDDA4.
Write OXCCDDEEFF to address 0xDDAS.
Write 0x9900AABB to address 0xDDAC.

There is full support for data byte swap to the AES data blocks, similar to the DES engine,
but in the AES cipher engine all data column registers are one word in width.

Results of this write operation:
Byte Swap AES Data In/out
0 9900AABBCCDDEEFF1122334455667788
1 BBAAOO99FFEEDDCC4433221188776655

NOTE: Other writes to addresses 0xDDAO, 0xXDDA4, 0OxDDAS8, or OXDDAC cause unexpected
results.

Poll the AES Command register or wait for the interrupt.

After the engine is loaded with the 128-bit block, it starts working automatically. The host must
not write anything to the engine until it finishes the calculation.

The host must poll the <Termination> bit[31] in the AES Encryption Command Register
(Table 500 p. 461). When the bit is set to 1, this is an indication to the host that the engine has
finished the calculation process and the result is ready.

Authentication calculation termination activates the ZInt2 interrupt (see the Cryptographic
Engines and Security Accelerator Interrupt Cause Register (Table 519 p. 468)). It can serve as
an alternative to host polling. This interrupt is set every time the <Termination> bit (bit [31] in the
AES Encryption Command Register) changes from 0 to 1.

After the interrupt occurs, the host writes 0 to bit [1] in the Cryptographic Engines and Security
Accelerator Interrupt Cause Register to reset it. Writing 1 has no effect.
Read AES result.

Once the termination bit has been asserted, the host may read the result. The result of the
encryption is stored in the AES Data In/Out registers (see Table 488 on page 459 through Table
491 on page 460).

Four read operations are required to read the result, i.e., the host must read addresses
0xDDAO, 0xDDA4, 0xDDAS8, and OXxDDAC.

Byte swap bits have no effect on reads, i.e., the engine does not perform any endianness
change on the result. To perform an endianness change, use the AES Encryption Command
Register (Table 500 p. 461) <OutByteSwap> bit [8].

Read keys.

It is possible to read the key values at any time, by accessing the appropriate registers. To
perform an endianness change on key reads, use the AES Encryption Command Register
<OutByteSwap> bit [8].

The AES Encryption Command Register controls the AES encryption modes. It also flags when
the processing is complete.

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 145

—

= 88F5182
M ARVELL® UserManual

NOTE: The AES encryption key reads are necessary for the AES Decryption engine
(see Section 11.1.4)

Figure 31 shows a typical AES encryption flow for a data block.

Figure 31: Typical AES Encryption Flow for a Data Block

Is termination bit set?

Write to Command Register
(encryption mode and
endianess)

v

Write cipher key

h J

Write 128 bit Data block

Y

No

Is termination bit set ?

Yes

h J

11.1.4 AES128 Decryption

The AES128 Decryption engine complies with the AES standard, as described in the FIPS draft.

This engine only performs decryption. The modes of operation and activation are similar to AES
encryption. The difference is that before loading the key, the host must calculate a decryption key.
This process is performed by loading a key into the AES encryption unit, performing a “dummy”
encryption cycle, then reading the resolved key from that engine (i.e., the decryption key).

A decryption key is the last 128/192/256 bits of the key block created by the key expansion
algorithm.

As in the Encryption engine, the Decryption engine implements an AES algorithm on a 128-bit data
block size in three possible mode sizes:

m 128-bit mode

m 192-bit mode

m 256-bit mode

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 146 Document Classification: Proprietary Information April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Cryptographic Engines Operation

Encryption calculation time is 20 cycles, without taking into consideration the read and write cycles
associated with writing the input data/key and reading the result.

To activate the AES Decryption engine, the following steps are required:

1. Calculate decryption key:

This step is unique to the AES Decryption engine and is only necessary when a new key (i.e.,
one that was never used before) is loaded. The AES algorithm uses a complex key schedule.
Thus at the end of the encryption operation the key is changed. To perform AES decryption, the
engine must actually start from the key at the end of the encryption key schedule. To decrypt a
data block with a given key, the host must first load this key into the Encryption engine, then
start the encryption process with any “dummy” data. At the end of the encryption process the
host reads the key registers from the Encryption engine. This decryption is loaded by the host
into the decryption key registers, to start the required description process.

To read the decryption key from the Encryption engine, the host must set the
<AesKeyRdMode> bit to 1 prior to reading the AES encryption key registers. Setting this bit
enables reading of the internal key in the AES Encryption engine. At the end of an encryption
process this is the key for the decryption start point.

The host may store the decryption key in memory, so that the decryption key calculation may be
skipped next time and the same key used.

2. Verify the termination bit in the AES Decryption/Encryption Command registerl.

3. Write operational mode and endianness for fields in the AES Decryption Command Register
(Table 513 p. 465).

4. Write the decryption key1.

5. Write the block for the 128-bit datal.

6. Poll the AES Decryption/Encryption Command register or wait for the interrupt.

7. Read AES resultl.

8. Read keys:
It is possible to read the key values at any time, by accessing the appropriate registers. To
perform an endianness change on key reads, use bit [8] <OutByteSwap> of the AES Encryption
Command Register (Table 500 p. 461) or AES Decryption Command Register
(Table 513 p. 465).
The AES Decryption Key registers (see Table 505 on page 463 through Table 512 on page 464)
contain the AES key block for the Decryption engine. A read to these registers returns the last
key written there by the host. The host must load a pre-calculated decryption key to these
registers (as described in Step 1 above).
NOTE: Directly loading an encryption key to these registers returns incorrect results!
The AES Decryption Command Register controls the AES decryption operation. It also flags
when the processing is complete.
1. Same as for AES encryption (see Section 11.1.3).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 147

E 8gF5182
M ARVELL® UserManual

Figure 32 shows a typical AES decryption flow for a data block.

Figure 32: Typical AES Decryption Flow for a Data Block

Is termination bit set?

Calculate decryption key
using AES encryption engine

Is termination bit set?

Write to Command Register
(Decryption mode and
endianess)

v

Write Decryption Key
(calculated above)

v

Write 128 bit data block

Is termination bit set?

Read Digest results

Doc. No. MV-S103345-01 Rev. C
Page 148 Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Security Accelerator Operation

11.2 Security Accelerator Operation

Figure 33 shows the main accelerator decision flow.

Figure 33: Security Accelerator Main Decision Flow

>l<7

Is session enabled?

Authentication only /
Authentication before Encryption ?

Encryption only /
Encryption before Authentication ?

Encryption before Authentication ?
et
Do Authentication Do Encryption

Authentication before Encryption ?

Authentication only ? Encryption only ?

Terminate and Disable
session

The managing software performs the following:

1. Uses the IDMA to copy the packet from main memory into the local SRAM of the security
accelerator. Since the local SRAM of the security accelerator is only 8 KB, it cannot contain
large packets.

2. Receives the cryptographic parameters relevant for the security accelerator operation to be
undergone by the packet.

3. Prepares a descriptor in the local SRAM of the security accelerator, stating the required

operation and parameters for the accelerator. The descriptor, 8 DWords long, is described in
Section 11.2.4.

Writes the pointer to this descriptor into the selected session, the <SecurityAccl DescPtr0> field
in the Security Accelerator Descriptor Pointer Session 0 Register (Table 515 p. 466) or the
<SecurityAccl DescPtrl1> field in the Security Accelerator Descriptor Pointer Session 1 Register
(Table 516 p. 466).

5. Activates the programmed session, by setting the appropriate bit in the Security Accelerator
Command Register (Table 514 p. 465).

»

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 149

—

= 88F5182

M ARVELL® UserManual

6. Waits for the session completion indication either by polling the Security Accelerator Status
Register (Table 518 p. 467) or by interrupt. In the meantime, a new session can be prepared
and activated. The accelerator will start processing the second session as soon as the first has

been completed.
7. Uses the IDMA to copy the processed packet back into main memory.

Figure 34 illustrates the security acceleration flow for packet processing and Figure 35 illustrates the

enhanced mode.

Figure 34: Security Acceleration Flow for Packet Processing

Doc. No. MV-S103345-01 Rev. C
Page 150

Are security accelerator
channel AND IDMA
channel available?

Activate IDMA:
Copy packet from DRAM to
security accelerator local SRAM

—

Initialize security accelerator
local SRAM: Descriptor and
Parameters tables

v

Initialize security accelerator
descriptor pointer register

v

Activate security
Accelerator channel

—

) 4 No

Is termination bit set?

Activate IDMA:

Copy packet from security
accelerator local SRAM

to DRAM

Read results from SRAM
(processed Packet in DRAM)

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

11.2.1

Cryptographic Engines and Security Accelerator

Security Accelerator Operation

Attach IDMA to Security Accelerator—Enhanced Software

Flowchart

To perform the following flow, set bits <ChOWaitFor IDMA>, <Chl1WaitFor IDMA>, <ChOActivate
IDMA>, and <Ch1Activate IDMA> in the Security Accelerator Configuration Register

(Table 517 p. 467).

When the security accelerator operates in conjunction with IDMA, it can operate only with the
external DRAM. It can activate the IDMA, sense its status, and provide a single completion interrupt
(see Figure 35). The first five steps in the flow are performed by software (SW) and the remaining

steps by hardware (HW).

Figure 35: Security Acceleration Flow for Packet Processing—Enhanced Mode

SW initializes IDMA descriptors chain
(in DRAM)

Y

SW initializes IDMA configuration
registers

v

SW initializes security accelerate
descriptor and parameters (in DRAM)

v

SW initializes security accelerate
configuration registers change

) J

v

SW activates the security accelerate
HW

Security accelerator HW further
processes the packet according the
Security accelerator descriptor,
placing the result in the Security
accelerator local SRAM

v

Y

Security accelerator HW activates
IDMA

Security accelerator HW activates
IDMA for phase 2

v

v

IDMA copes the Security accelerator
descriptor and parameters from DRAM
to the Security accelerator local SRAM

IDMA copies the processed packet
from the Security accelerator local
SRAM to DRAM

v

) J

IDMA copies the packet from DRAM to
the Security accelerator local SRAM

IDMA indicates IDMA phase 2
completion to the Security accelerator
HW by setting COMP bit to 1

/

Y

IDMA indicates the Security accelerate
HW on IDMA phase 1 completion by
setting OWN bit to 1

Security accelerator clears the COMP
and OWN bits of the IDMA channel
and sets bit AccAndIDMAInt, the
completion interrupt indication for the
entire flow

Copyright © 2008 Marvell

April 29, 2008, Preliminary

Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 151

—
=
—

M ARVELL®

88F5182
User Manual

Figure 36: IDMA Channel Descriptors Structure for Security Accelerator Packet

Processing—Enhanced Mode

Source packet —
First Descriptor

i
|/

Source packet —
Last Descriptor®

v

Security accelerator
OWN bit set

v

Destination packet —
First Descriptor

v

Destination packet —
Last Descriptor?

v

NULL

IThis step only applies if there is more that one source packet descriptor.

2This step applies if there is more that one destination packet descriptor.

11.2.2 Encryption Operation

Initialization
Initialization is carried out as follows:

1. Encryption mode is read from the Security Accelerator Data Structure DWord 0—Configuration
(Table 44 p. 155) and the configuration register of the selected cryptographic engine is written.

2. Source and destination pointers are read from Security Accelerator Data Structure DWord
1—Encryption Pointers (Table 45 p. 156).

3. Number of bytes to be encrypted is read from Security Accelerator Data Structure DWord 2—
Encryption Data Length (Table 46 p. 156).

4. Keys for encryption are read from the pointer specified in Security Accelerator Data Structure
DWord 3—Encryption Keys Pointer (Table 47 p. 156) and are written to the selected
cryptographic engine.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 152

Document Classification: Proprietary Information April 29, 2008, Preliminary

5.

Cryptographic Engines and Security Accelerator
Security Accelerator Operation

When the mode selected is CBC, initial values are read from the pointer specified in Security
Accelerator Data Structure DWord 4—Encryption Initial Values Pointer (Table 48 p. 157). For
DES/3DES, initial values are written to the engine.

Data Processing
Data processing is carried out as follows:

1. Datais read from the source pointer, block by block (8 bytes for DES/3DES, 16 bytes for AES)
for the specified data size. If the size is not a multiple of block size, the last block is padded with
zeros.

2. Each block is fed to the engine. When the engine finishes processing a block, the result is read
and written to the location specified by the destination pointer.

3. When using AES CBC encryption, the first block data is XORed with the initial values before it is
written to the engine. Each of the following blocks is first XORed with the result of the previous
block processing before it is written to the engine.

4. When using of AES CBC decryption, the result of the first block processing is XORed with the
initial values before it is written to the destination. After that, each processed block is XORed
with the previous block of data before it is written to destination.

Termination

Termination is carried out as follows:

1.

When using CBC encryption, the last block of the destination data is written to memory,
according to the pointer specified in the Security Accelerator Data Structure DWord
4—Encryption Initial Values Pointer, overwriting the previous data.

When using CBC decryption, the last block of source data is written to memory, according to the
pointer specified in the Security Accelerator Data Structure DWord 4—Encryption Initial Values
Painter.

11.2.3 Authentication Operation

Initialization
Initialization is carried out as follows:

1.

Authentication mode is read from the Security Accelerator Data Structure DWord
0—Configuration (Table 44 p. 155) and the configuration register of the Authentication engine is
written.

The source pointer is read from the Security Accelerator Data Structure DWord 5—MAC Source
Pointer (Table 49 p. 157).

The Digest location pointer and the number of bytes in the message are read from the Security
Accelerator Data Structure DWord 6—MAC Digest (Table 50 p. 157).

When the direction is “Decode”, the original digest is first read and stored internally, then it is
overwritten with zeros.

When using the HMAC operation, the inner initial values pointer is read from the Security
Accelerator Data Structure DWord 7—MAC Initial Values Pointers (Table 51 p. 158), and the
values are written to the IV registers of the Authentication engine.

Data Processing
Data processing is carried out as follows:

1.
2.

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Data is read from the source pointer block by block (64 bytes per block).

The last chunk of data is padded with a single 1 bit, as many zeros as needed, and the original
message length. For HMAC modes, packet length is increased by 64 bytes to reflect the ipad
string length.

Doc. No. MV-S103345-01 Rev. C
Document Classification: Proprietary Information Page 153

M ARVELL®

—
=
—

88F5182
User Manual

3. For HMAC modes, the outer initial values pointer is read from the Security Accelerator Data
Structure DWord 7—MAC Initial Values Pointers (Table 51 p. 158), and the values are written to
the IV registers of the Authentication engine. The digest from the previous section is now used
as the input data to the engine, padded again as specified, with the packet length now equal to
the key length plus 64 bytes (now reflecting the opad string length).

Termination

Termination is carried out as follows:

1. The resulting digest is read from the engine, and stored at the location that has been read from
Security Accelerator Data Structure DWord 6—MAC Digest.

2. When the direction is “Decode”, the digest is also compared to the copy extracted from the

original message. If the digests are not identical, an indication bit is set in the Security
Accelerator Status Register (Table 518 p. 467).

If the <StopOnDecodeDigestErr> field in the Security Accelerator Configuration Register
(Table 517 p. 467) was set, the session is immediately aborted.

11.2.3.1 Security Accelerator in Continuous Mode
The Security Accelerator supports Continuous mode.
In this mode, the Security Accelerator can process fragmented packets one at a time. Only single
packets need to reside in the Security Accelerator local SRAM, while the total size of the packet is
actually unlimited.
Field Fragmentation mode is used to indicate if the current fragment is the first, middle, or last in the
packet.
The fragments must be inserted in order.
EI Both sessions may be used, as long as the fragment order is maintained.
Note
1. Processing the First Fragment:
Operation starts the same as in Non-fragmented mode. Finalization is not performed. In
encryption, 1V is not stored. In authentication, data is not padded, the outer operation in HMAC
is not performed, and the digest is not written or compared.
2. Processing the Middle Fragment (Not First And Not Last):
Initializations are not performed. In encryption, keys and IVs are not loaded into the engines. In
authentication, the digest is not read or cleared. Inner operation of HMAC is not performed.
Finalization is not performed, as for the first fragment.
3. Processing the Last Fragment:
Initializations are not performed, as for a middle fragment. Finalization is performed as in
Non-fragmented mode.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 154 Document Classification: Proprietary Information April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Security Accelerator Operation

11.2.4 Security Accelerator Descriptor Data Structure
The descriptor data structure is described in Table 44 through Table 51.

Table 44: Security Accelerator Data Structure DWord 0—Configuration

Bits

1.0

3:2
6:4

9:8

11:10
12

15:13
16

19:17

20

23:21
25:24

29:26
31:30

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Field

Operation

Reserved

MacMode

AuthResultLen

EncryptMode

Reserved

Direction

Reserved

EncryptConfidentia

lityMode
Reserved

3DESMode

Reserved

AESKeylLength

Reserved

FragMode

Function

00 = MAC only

01 = Cryptographic only

10 = MAC then cryptographic
11 = Cryptographic then MAC

Reserved

100 = MD5

101 = SHA1

110 = HMAC-MD5
111 = HMAC-SHA1

All other combinations are reserved (no operation).

Authentication result length
0 = Full size (128 bit in MD-5, 160b in SHA-1)
1=96b

00 = Reserved (no operation)
01 =DES

10 = 3DES

11 = AES

Reserved

0 = Encode
1 = Decode

Reserved

0=ECB
1=CBC

Reserved

0 =EEE
1=EDE
Relevant only in 3DES encryption mode.

Reserved

00 = 128 bit key

01 = 192 bit key

10 = 256 bit key

11 = Reserved

Relevant only in AES encryption mode.

Reserved

Fragmentation mode

00 = Not fragmented

01 = First Fragment in packet
10 = Last Fragment in packet
11 = Middle Fragment in packet

Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 155

—

= 88F5182
M ARVELL® UserManual

Table 45: Security Accelerator Data Structure DWord 1—Encryption Pointers

Bits

12:0

15:13
28:16

31:29

Field Function

EncrypSourceData Pointer to the first DWord of data to encrypt (DWord aligned)
Ptr Bits [2:0] must be 0.

Reserved Reserved

EncrypDesDataPtr Pointer to the first DWord of encrypted data (DWord aligned)
Bits [18:16] must be 0.

Reserved Reserved

Table 46: Security Accelerator Data Structure DWord 2— Encryption Data Length

Bits

12:0

31:13

Field Function

EncrypDatalLen Numbers of bytes to encrypt
The length should be a multiple of encryption block size (8 bytes for
DES/3DES, 16 bytes for AES).
Bits [2:0] must be 0.
Bit [3] (in AES only) is reserved and assumed to be O regardless of
programming.

Reserved Reserved

Table 47: Security Accelerator Data Structure DWord 3—Encryption Keys Pointer

Bits

12:0

31:13

Doc. No. MV-S103345-01 Rev. C

Page 156

Field Function

EncrypKeyPointer | Pointer to an array (EKey) of DWords that contains the encryption key
(DWord aligned)
EKey[0] = Key 0 low of DES/3DES / Key column 0 of AES 128/192/256
EKey[1] = Key 0 high of DES/3DES / Key column 1 of AES 128/192/256
EKey[2] = Key 1 low of 3DES / Key column 2 of AES 128/192/256
EKey[3] = Key 1 high of 3DES / Key column 3 of AES 128/192/256
EKey[4] = Key 2 low of 3DES / Key column 4 of AES 192/256
EKey[5] = Key 2 high of 3DES / Key column 5 of AES 192/256
EKey[6] = Key column 6 of AES 256
EKey[7] = Key column 7 of AES 256
Bits [2:0] must be 0.

Reserved Reserved

Copyright © 2008 Marvell
Document Classification: Proprietary Information April 29, 2008, Preliminary

Cryptographic Engines and Security Accelerator
Security Accelerator Operation

Table 48: Security Accelerator Data Structure DWord 4—Encryption Initial Values

Pointer

Bits Field Function

12:0 EncryptlVPointer | Pointer to an array (EIV) of DWords that contains the encryption initial
values (DWord aligned)
EIV[O] = IV low of DES/3DES / IV 0 of AES
EIV[1] = IV high of DES/3DES/ IV 1 of AES
EIV[2] = IV 2 of AES
EIV[3] = IV 3 of AES

15:13 Reserved Reserved

28:16 EncryptlVBufPoint * In Encryption mode, in the encryption direction:
er Before encryption starts, the security accelerator copies the contents
of <EncryptlVPointer> (bit[15:0] in same register) to
<EncryptlVBufPointer>.
¢ In Encryption mode, in the decryption direction:
Before decryption starts, the security accelerator copies the contents
of <EncryptlVBufPointer> to <EncryptlVPointer>.
Bits [18:16] must be 0.

31:29 Reserved Reserved

Table 49: Security Accelerator Data Structure DWord 5—MAC Source Pointer

Bits Field Function

12:0 MACSourceDataP | Pointer to the first DWord of data to MAC (DWord aligned)
ointer Bits [2:0] must be 0.

15:13 Reserved Reserved

31:16 TotalMacDatalLeng ' In MAC Non Fragment mode, this field should be equal to
th MacDatalLength (see Table 50). In the last MAC fragment, it should be
equal to the total data lengths of all the packet fragments.

Table 50: Security Accelerator Data Structure DWord 6—MAC Digest

Bits Field Function

12:0 MACDigestPointer | Byte location in which digest is stored during encoding or should be
stored during decoding
Bits [2:0] must be 0.

15:13 Reserved Reserved
28:16 MACDatalLength Numbers of bytes to MAC

31:29 Reserved Reserved

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 157

—

= 88F5182
M ARVELL® UserManual

Table 51: Security Accelerator Data Structure DWord 7—MAC Initial Values
Pointers

Bits Field Function

12:0 MACInnerlVPointe Pointer to an array (MIIV) of DWords that contains the MAC inner initial
r values (DWord aligned)
These values are the outcome of the hash function operation over the
64-byte string that equals the bitwise XOR between the key padded with
zeros and the ipad string.
MIIV[O] = Inner IV 0 of HMAC-MD5/HMAC-SHA1
MIIV[1] = Inner IV 1 of HMAC-MD5/HMAC-SHA1
MIIV[2] = Inner IV 2 of HMAC-MD5/HMAC-SHA1
MIV[3] = Inner IV 3 of HMAC-MD5/HMAC-SHA1
MIIV[4] = Inner IV 4 of HMAC-SHA1
Bits [2:0] must be 0.

15:13 Reserved Reserved

28:16 MACOuterlVPoint | Pointer to an array (MOIV) of DWords that contains the MAC outer initial
er values (DWord aligned). These values are the outcome of the hash
function operation over the 64-byte string that equals the bitwise XOR
between the key padded with zeros and the opad string.
MOIV[0] = Outer IV 0 of HMAC-MD5/HMAC-SHA1
MOIV[1] = Outer IV 1 of HMAC-MD5/HMAC-SHA1
MOIV[2] = Outer IV 2 of HMAC-MD5/HMAC-SHA1
MOIV[3] = Outer IV 3 of HMAC-MD5/HMAC-SHA1
MOIV[4] = Outer IV 4 of HMAC-SHA1
Bits [18:16] must be 0.

31:29 Reserved Reserved

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 158 Document Classification: Proprietary Information April 29, 2008, Preliminary

Two-Wire Serial Interface (TWSI)
Functional Description

12 Two-Wire Serial Interface (TWSI)

12.1 Functional Description

The 88F5182 provides full Two-Wire Serial Interface (TWSI) support. It can act as master generating
read/write requests and as a slave responding to read/write requests. It fully supports a multiple
TWSI-masters environment (clock synchronization, bus arbitration).

The TWSI interface can be used for various applications. It can be used to control other TWSI on
board devices, to read DIMM SPD ROM, and for serial ROM initialization. For more details, see the
Reset Pins and Configuration section in the 88F5182 Feroceon® Storage Networking SoC,
Datasheet.

The TWSI port consists of two open drain signals:
m TW_SCK (Serial Clock)
m TW_SDA (Serial address/data)

The TWSI master starts a transaction by driving a start condition followed by a 7- or 10-bit slave
address and a read/write bit indication. The target TWSI slave responds with acknowledge.

In the case of a write access (R/W bit is 0, following the TWSI slave acknowledge), the master drives
8-bit data and the slave responds with acknowledge. This write access (8-bit data followed by
acknowledge) continues until the TWSI master ends the transaction with a stop condition.

In the case of read access following the TWSI slave address acknowledge, the TWSI slave drives
8-bit data and the master responds with acknowledge. This read access (8-bit data followed by
acknowledge) continues until the TWSI master ends the transaction by responding with no
acknowledge to the last 8-bit data, followed by a stop condition.

A target slave that cannot drive valid read data right after it received the address, can insert “wait
states” by forcing TW_SCK low until it has valid data to drive on the TW_SDA line.

A master is allowed to combine two transactions. After the last data transfer, it can drive a new start
condition followed by a new slave address, rather than driving a stop condition. Combining
transactions guarantees that the master does not loose arbitration to some other TWSI master. The
TWSI interface master and slave activities are handled by Feroceon® CPU core access to internal
registers, plus the interrupt interface.

TWSI examples are shown in Figure 37.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 159

—

= 88F5182
M ARVELL® UserManual

Figure 37: TWSI Examples

Data Transfer Sequence

SCL \

. . . _ ; . .
. . . 7 . .
SDA —\ : : : / . /—
/ A Vi \ ./
o/
Start Valid ernzzta Stop
Condition Data Y Condition
Change
Sequential Read
s
t First Data Last Data S
a t
r AN N o
t riw p
s| 1] O] 1] Of x| x| x| 1 |_p|
a a n
\) ¢ c o
k k
Address a
c
k
Combined Access
s s
t t Last Data S
a a t
r r N o
t riw t r/w p
s| 1] O] 1f Of x| x| x| O s| 1] O] 1] Of x| x| x| 1 |_p|
a a a a n
\) ¢ c \) ¢ c o
k k k k
Address Address a
c
L
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 160 Document Classification: Proprietary Information April 29, 2008, Preliminary

12.1.1

12.1.2

12.1.3

12.1.4

12.1.5

Two-Wire Serial Interface (TWSI)
Functional Description

TWSI Slave Addressing

The TWSI slave interface supports both 7-bit and 10-bit addressing. The slave address is
programmed by the TWSI Slave Address register (see Table 522 on page 470) and TWSI Extended
Slave Address register (see Table 523 on page 470).

When the TWSI receives a 7-bit address after a start condition, it compares it against the value
programmed in the Slave Address register, and if it matches, it responds with acknowledge.

If the received 7 address bits are 11110xx, meaning that it is an 10-bit slave address, the TWSI
compares the received 10-bit address with the 10-bit value programmed in the TWSI Slave Address
(Table 522 p. 470) and TWSI Extended Slave Address (Table 523 p. 470) registers, and if it
matches, it responds with acknowledge.

The TWSI interface also support slave response to general call transactions. If the <GCE> bit in the
TWSI Slave Address register is set to 1, the TWSI also responds to the general call address (0x0).

TWSI Data

An 8-bit TWSI Data (Table 524 p. 471) register is used both in master and slave modes.

In master mode, the Feroceon CPU core must place the slave address or write data to be
transmitted. In the case of read access, it contains received data (need to be read by the Feroceon
CPU core).

In slave mode, the Data register contains data received from master on write access, or data to be
transmitted (written by the Feroceon CPU core) on read access. TWSI Data register MSB contains
the first bit to be transmitted or being received.

TWSI Control

An 8-bit TWSI Control (Table 525 p. 471) register is used both in master and slave modes.

TWSI Status

An 8-bit TWSI Status (Table 526 p. 473) register is used both in master and slave modes.

This 8-bit register contains the current status of the TWSI interface. Bits [7:3] are the status code,
bits [2:0] are Reserved (read only 0).

Baud Rate Register

TWSI specification defines TW_SCK frequency of 100 KHz (400 KHz in fast mode). The TWSI
module contains a clock divider to generate the TW_SCK clock. Setting bits[6:0] of TWSI Baud Rate
(Table 527 p. 474) register (offset 0x1100C) defines TW_SCK frequency as follows:

Table 52: Setting the Baud Rate Register

TClk N M TWSI Frequency
(in kHz)

166 MHz 3 10 94.3
3 13 74.1
4 9 51.8

6 12 99.7

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 161

—
=
—

M ARVELL®

88F5182
User Manual

F - FTC”(
TWSCK (N+1)
10-(M+1)-2

|§ | | Where M is the value represented by bits [6:3] and N the value represented by bits
[2:0]. If for example M=N=4 (the default values), running TCLK at 100 MHz results in
Note SCL frequency of 62.5 kHz.

As defined in the TWSI specification, the maximum supported TW_SCK frequency is 100 kHz. Fast
mode (where TW_SCK frequency is 400 kHz) is not supported.

12.2 TWSI Master Operation

The Feroceon CPU core can initiate TWSI master read and write transactions via TWSI registers, as
described in the following sections.

12.2.1 Master Write Access

A master write access consists of the following steps:

1.

The Feroceon CPU core sets the <Start> bit in the TWSI Control register (see Table 525 on
page 471) to 1. The TWSI master then generates a start condition as soon as the bus is free,
sets an Interrupt flag, and sets the Status register to Ox8.

The Feroceon CPU core writes 7-bit address plus a write bit to the TWSI Data register (see
Table 524 on page 471) and clears Interrupt flag for the TWSI master interface to drive the
slave address on the bus. The target slave responds with acknowledge. This causes an
Interrupt flag to be set and a status code of 0x18 is registered in the Status register.

If the target TWSI device has an 10-bit address, the Feroceon CPU core needs to write the
remainder 8-bit address bits to the Data register. The Feroceon CPU core then clears the
Interrupt flag for the master to drive this address on the bus. The target device responds with
acknowledge, causing an Interrupt flag to be set, and status code of 0xDO be registered in the
TWSI Status register (see Table 526 on page 473).

The Feroceon CPU core writes data byte to the TWSI Data register, and then clears Interrupt
flag for the TWSI master interface to drive the data on the bus. The target slave responds with
acknowledge, causing Interrupt flag to be set, and status code of 0x28 be registered in the
Status register. The Feroceon CPU core continues this loop of writing new data to the Data
register and clear Interrupt flag, as long as it needs to transmit write data to the target.

After the last data transmit, the Feroceon CPU core may terminate the transaction or restart a
new transaction. To terminate the transaction, the Feroceon CPU core sets the Control
register’s <Stop> bit and then clears the Interrupt flag, causing the TWSI master to generate a
stop condition on the bus, and go back to idle state. To restart a new transaction, the Feroceon
CPU core sets the TWSI Control register’s <Start> bit and clears the Interrupt flag, causing
TWSI master to generate a new start condition.

a slave not responding with acknowledge or arbitration loss. Each of these cases is
reported in the TWSI Status register and needs to be handled by the Feroceon CPU
core.

EI This sequence describes a normal operation. There are also abnormal cases, such as

Note

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 162

Document Classification: Proprietary Information April 29, 2008, Preliminary

12.2.2

12.3

12.3.1

Two-Wire Serial Interface (TWSI)
TWSI Slave Operation

Master Read Access

A master read access consists of the following steps:

1. Generate, a start condition, exactly the same as in the case of write access, see Section 12.2.1
Master Write Access.

2. Drive 7- or 10-bit slave address, exactly the same as in the case of write access, with the
exception that the status code after the first address byte transmit is 0x40, and after 2nd
address byte transmit (in the case of a 10-bit address) is OxEO.

3. Read data being received from the target device is placed in the data register and acknowledge
is driven on the bus. Also, an interrupt flag is set, and status code of 0x50 is registered in the
Status register. The Feroceon CPU core reads data from Data register and clears the Interrupt
flag to continue receiving next read data byte. This loop is continued as long as the Feroceon
CPU core wishes to read data from the target device.

4. To terminate, the read access needs to respond with no acknowledge to the last data. It then
generates a stop condition or generates a new start condition to restart a new transaction. With
last data, the Feroceon CPU core clears the TWSI Control register’s Acknowledge bit (when
clearing the Interrupt bit), causing the TWSI master interface to respond with no acknowledge
to last received read data. In this case, the Interrupt flag is set with status code of 0x58. Now,
the Feroceon CPU core can issue a stop condition or a new start condition.

The above sequence describes a normal operation. There are also abnormal cases,
| ;] | such as the slave not responding with acknowledge, or arbitration loss. Each of these
cases is reported in the Status register and needs to be handled by Feroceon CPU

Note core,

TWSI Slave Operation

The TWSI slave interface can respond to a read access, driving read data back to the master that
initiated the transaction, or respond to write access, receiving write data from the master.

The two cases are described in the following sections.

Slave Read Access

Upon detecting a new address driven on the bus with read bit indication, the TWSI slave interface
compares the address against the address programmed in the Slave Address register. If it matches,
the slave responds with acknowledge. It also sets the Interrupt flag, and sets status code to 0xA8.

| ;] | If the TWSI slave address is 10-bit, the Interrupt flag is set and status code changes

Not only after receiving and identify address match also on the 2nd address byte).
ote

The Feroceon CPU core now must write new read data to the Data register and clears the Interrupt
flag, causing TWSI slave interface to drive the data on the bus. The master responds with
acknowledge causing an Interrupt flag to be set, and status code of 0xB8 to be registered in the
Status register.

If the master does not respond with acknowledge, the Interrupt flag is set, status code 0f 0xCO is
registered, and TWSI slave interface returns back to idle state.

If the master generates a stop condition after driving an acknowledge bit, the TWSI slave interface
returns back to idle state.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 163

—

= 88F5182
M ARVELL® UserManual

12.3.2 Slave Write Access

Upon detecting a new address driven on the bus with write bit indication, the TWSI slave interface
compares the address against the address programmed in the Slave Address register and, if it
matches, responds with acknowledge. It also sets an Interrupt flag, and sets status code to 0x60
(0x70 in the case of general call address, if general call is enabled).

Following each write byte received, the TWSI slave interface responds with acknowledge, sets an
Interrupt flag, and sets status code to 0x80 (0x90 in the case of general call access). The Feroceon
CPU core then reads the received data from Data register and clears Interrupt flag, to allow transfer
to continue.

If a stop condition or a start condition of a new access is detected after driving the acknowledge bit,
an Interrupt flag is set and a status code of OxAO is registered.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 164 Document Classification: Proprietary Information April 29, 2008, Preliminary

13

13.1

13.2

UART Interface
Functional Description

UART Interface

Functional Description

The 88F5182 supports two Universal Asynchronous Receiver/Transmitter (UART) ports. One of the
UART ports is multiplexed on the MPP port.

The UART is integrated into the device to support data input/output operations for peripheral devices
connected through a standard UART interface.

The UART includes the following features:
m FIFO mode permanently selected for transmit and receive operations
m Modem control functions (CTSn, RSTn)

UART Interface Pin Assignment

The 88F5182 supports the UART interface through the UAO_TXD and UAO_RXD pins and provides
modem control functions through the UAO_CTSn and UAO_RTSn pins.

Table 53 shows the signal names on the 88F5182 and the description of the pins.

Table 53: UART Pin Assignments

Pin Name Type Description

UAO_TX (@) The UAO_TX signals are the serial data output to the modem, data set,

UA1_TX or peripheral device. The UAO_TX signals are set high when the reset
is applied.

UAO_RX The UAO_RX signals are the serial data input from the modem, data

UA1_RX set, or peripheral device.

UAO_CTSn CLEAR TO SEND: When low, these pins indicate that the receiving

UA1_CTSn UART is ready to receive data. When the receiving UART de-asserts

UAO_CTSn high, the transmitting UART stops transmission to prevent
overflow of the receiving UART buffer.

UAO_RTSn (0] REQUEST TO SEND: When low, these pins informs the remote device
UA1_RTSn that the UART is ready to receive data.

EI For further information see Section A.13, UART Interface Registers, on page 475.
Note

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 165

—

= 88F5182

M ARVELL® UserManual

14

14.1

14.2

Device Controller Interface

Functional Description

The 88F5182 Device controller interface supports up to four banks of devices. Each bank supports
up to 512 MB of address space. Each bank has its own timing parameters register. Bank width can
be programmed to 8- or 16-bits. Bank timing parameters can be programmed to support different
device types (e.g., sync burst SRAM, Flash, ROM, I/O Controllers).

The four chip selects are typically separated into three individual chip selects and one chip select for
a boot device. The boot device bank is the same as any of the other banks except that the core
boots from the boot device and its default width is sampled at reset.

The device controller multiplexes the address and data buses. The interface latches the address into
latches to support up to 512 MB of address space. The interface supports any size access up to
128 bytes. See Table 54 for device controller pin assignment.

| ;| | All output signals are driven with the rising edge of TCLK and all inputs are sampled

with the rising edge of TCLK.
Note

Device Interface Pin Assignment

Table 54 provides a list of the Device interface pins and describes their function.

Table 54: Device Controller Pin Assignments

Pin Name Type Description
DEV_CEn[2:0] (0] Device Bus Chip Enable correspond to bank [2:0]
DEV_BootCEn (0] Device Bus Chip Enable correspond to Boot Bank
DEV_OEn (0] Device Bus Output Enable
DEV_WEN[1:0] (0] Device Bus Write Enable
DEV_ALE[1:0] (0] Device Bus Address Latch Enable correspond to ALE[O].
DEV_D[8:0] t/s /O | Device Bus Multiplexed Address/Data bus
DEV_D[15:9] t/s1/O | Device Bus Data bus
DEV_A[2:0] (0] Device Bus Address
DEV_READY | Device Ready
DEV_BURSTN/DEV_LASTn (0] Device Burst/Device last
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 166 Document Classification: Proprietary Information April 29, 2008, Preliminary

14.3 Device Interface Block Diagram

Figure 38 provides a diagram of the Device block.

Figure 38: Device Block Diagram Example

Device Controller Interface
Device Interface Block Diagram

DEV_ALE[0]

DEV_ALE[1]

DEV_A[2:0]
DEV_D[15:9]
DEV_DI[8]
DEV_D[7:0]
DEV_OEn
DEV_WER(0]
DEV_WEN([1]
DEV_CEn

Copyright © 2008 Marvell

April 29, 2008, Preliminary

| A[26:19]
——-{ A[18:16]

- CK

- A[15]

M

| A[5:3]

> CK
A[14] —

A[13:6]

vyyvyVYvyVY

A[26:15]

Up to 512 MByte
Device

A[14:3]

A[2:0]
D[15:9]
D[8]
D[7:0]
OEn
WER[O]
WEN[1]

CEn

Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C

Page 167

®

—

= 88F5182
M ARVELL® UserManual

Figure 39: Up to 512-KB Device with Single Latch Block Diagram Example

ALE[1] B CK

- A[16]

T ® A[15]

—{ A[14]

- A[13:6]

A[5:3]
A[2:0] -
D[15:9] -
D[8] >
D[7:0] -
OEn |
WER[0] -
WEN[1] >
CEn |

Doc. No. MV-S103345-01 Rev. C
Page 168

A[16:3]

Up to 512KB
Device

AJ2:0]
D[15:9]
D[8]
D[7:0]
OEn
WER[O]
WERN[1]

CEn

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Device Controller Interface
Address Multiplexing

14.4 Address Multiplexing

Figure 40 provides a diagram of the address multiplexing.

Figure 40: Address Multiplexing

TChk /N /N S S S S

ALE[] ~— \ AN
ALE[0] \ A
Al20] I ABBL X AI816]) Al20] AR+
D[7:0] K A[13:6] X A[26:19]
Dis] WY A4l X AlI5]
OEn A[15 \
WER([0] (A[16])
CEn \ AN
14.5 Device Interface Read Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface can be programmed with different
timing parameters.

14.5.1 TurnOff
The TurnOff parameter defines the number of TCLK cycles that the 88F5182 does not drive the AD

bus after the completion of a Device read. This prevents contentions on the Device bus after a read
cycle from a slow device. The minimum setting of this parameter is Ox2.

14.5.2 Acc2First

The Acc2First parameter defines the number of TCLK cycles from the negation of ALE[0] to the
cycle that the first read data is sampled by 88F5182. Extend this parameter by extending the
READYNnN pin, see Section 14.8, READYn Support, on page 172. The number of cycles =
<Acc2First> - 3. The minimum setting of this parameter is 0x6.

14.5.3 Acc2Next

The Acc2Next parameter defines the number of TCLK cycles between the cycle that samples data N
to the cycle that samples data N+1 (in burst accesses). Extend this parameter by extending the
READYNn pin, see Section 14.8, READYn Support, on page 172. The minimum setting of this
parameter is 0x2.

Figure 41 shows a device read timing parameters example.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 169

—

= 88F5182
M ARVELL® UserManual

Figure 41: 8-bit Flash Read Parameters Example

TCIk
ALE[1] \
fe——Acc2First = 6 —]
ALE[0]
[-Acc2Next = 2 —sle— TurnOff = 2|
D I Address Ph0 X Address Phl
A [Address PhO)X Address Ph1 Y X 000 |
CEn
OEn (_Address Ph0) \ \
14.6 Device Interface Write Timing Parameters

To allow flexible interfacing to slow and fast devices, the interface can be programmed with different
timing parameters.

14.6.1 ALE2Wr

The ALE2Wr parameter defines the number of TCLK cycles from the ALE[O] negation cycle to the
WERn assertion. The number of cycles = <ALE2Wr> - 3. The minimum setting of this parameter is
0x4.

14.6.2 WrLow

The WrLow parameter defines the number of TCLKs that WEn is active (low). Extend this parameter
by extending the READYn pin (see Section 14.8, READYn Support, on page 172). A[2:0] and Data
are kept valid as long as WEn is active. This parameter defines the setup time of address and data
to WEn rise. The minimum setting of this parameter is Ox1.

14.6.3 WrHigh

The <WrHigh> parameter defines the number of TCLK cycles that WEn is kept inactive (high)
between data beats of a burst write. A[2:0] and Data are kept valid (do not toggle) for <WrHigh>-1
periods. This parameter defines the hold time of address and data after WEn rise. The minimum
setting of this parameter is Ox1.

—_ m Programming <WrHigh> to 0 is only used for zero wait states burst access (e.g.,
N sync burst SRAM access). It is only allowed when WrLow is set to 1.

If setting WrHigh to 0, A[2:0] and write data toggle every cycle.

If setting WrHigh to 1, A[2:0] and write data toggle the same cycle Wr toggles from
High to Low.

Note

Figure 42 shows a Flash write timing parameters example.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 170 Document Classification: Proprietary Information April 29, 2008, Preliminary

Device Controller Interface
Data Pack/Unpack and Burst Support

Figure 42: 8-bit Flash Write Parameters Example

ek /NSNS

ALE[1] \ \
ke ALE2Wr=5+

ALE[0]

D [Address PhO)('Address Ph1){ Data 0 % Data 1 N

A [Address PhO_) Address Phi) X) 00
CEn \ /
<«—»| WrLow=1
+| WrHigh=2 ’4»
WEn (Address PhO) / \ AN

14.7 Data Pack/Unpack and Burst Support

The Device interface is an 8-/16-bit wide interface and supports up to a 128-byte burst. The Device
controller contains a single 128-byte buffer. When a 8b or 16b device is used, Multiple 8-byte bursts
are performed towards the device until the data transfer is completed.

The burst address on the external interface is supported by a dedicated 3-bit A[2:0] signals.

A[2:0] must be connected directly to the device address bus (not like the latched address on the
multiplexed AD bus). The Device controller supports packing/unpacking of data between the device
and the initiator (for example, the core).

As previously described, the Device controller needs to pack read data from the 8-/16-bit wide
Device to the 88F5182 internal 64-bit data path. The Device controller drives the read data to the
initiator only when the transaction on the Device bus completes and all data resides on its internal
buffer.

| ;] | The Device controller does not support non-sequential byte enables to 8- or 16-bit wide

Not devices (e.g., a write of a 32-bit word to an 8-bit wide device with byte enable 1'b1010).
ote

14.7.1 BAdrSkew

The 88F5182 device also supports early toggle of burst address during read access. BAdrSkew
parameter defines the number of TCLK cycles from A[2:0] toggle, to read data sample. This
parameter is useful for SyncBurst SRAM type of devices, where the address precedes the read data
by one (Flow Through SRAM) or two (Pipelined SRAM) cycles.

Figure 43 shows a BAdrSkew usage example.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 171

—

= 88F5182
M ARVELL® UserManual

Figure 43: Pipeline Sync Burst SRAM Read Example

TCk /N S S L
ALE[1] \ /

| Acc2First = 6

ALE[0]
<BAdrSkew = 2%
AD K Address Ph0 X Address Phl Data0 X Datal)(Data2 X Data3)

A [l _Address PhO__ X Address Ph1__)(__AO Al X A2 X A3 N

CEn

OEn Address Ph0

14.8 READYn Support

READYNnN input is used to extend the programmable device timing parameters. This is useful for two

cases:
m Interfacing a very slow device that has access time greater than the maximum programmable
values.

m Interfacing a device with a non deterministic access time (access time depends on other system
events and activity).

Ready can extend the following timing parameters—<Acc2First>, <Acc2Next> and <WrLow>.
During a read access, the device controller first counts TCLK cycles based on <Acc2First>
programmable parameters. If at the time <Acc2First> is expired, READYn input is not asserted, it
keeps waiting until READYn is sampled asserted, and only then samples first read data. Similarly, if
at the time <Acc2Next> is expired, READYn is not asserted, it keeps waiting until READYn is
sampled asserted, and only then samples next read data. On a write access, if at the time WrLow is
expired, READYn input is not asserted, it keeps driving write data until READYn is sampled
asserted. Figure 44, Figure 45, and Figure 46 show examples of the READYn operation.

during a write access.

EI m If the WrLow or WrHigh timing parameter is set to 0, READYn is not supported
When interfacing a device with a non-deterministic access time, the timing

Note parameters are set to their minimum values and the actual access time is
controlled via READYn pin.

m The Device controller samples read data two cycles after DEV_READYn assertion
on a read access, and de-asserts DEV_WRn two cycles after DEV_READYnN
assertion on a write access.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 172 Document Classification: Proprietary Information April 29, 2008, Preliminary

Device Controller Interface
READYnN Support

Figure 44: READYn Extending Acc2First Example

le——Acc2First = 6 —>

TCk /N S

ALE[1] O\ /[
ALE[0] /A
D K Address PhO X Address Ph1 _|—

A _Address PhO__ X Address Ph1_) |
READYn ey |

Figure 45: READYn Extending Acc2Next Example

>Acc2Next = 2f¢

Tk /SN L
—

\ /

ALE[1]

ALE[0]
D [Address PhO X Address Ph1 (I Dat20) (Datal

A [_Address PhO__ X Address Ph1) K { |

READYn A

Figure 46: READYn Extending WrLow Example

< WrLow =5
Tk /O S L LS
ALE[] — \ /A
ALE[0] /
D K _Address Pho)(Address Ph1) Data 0 .]
A [Address PhO) Address Phi){ | 7

WEn Address PhO
READYn []

To prevent system hang due to a lack of READYn assertion, the 88F5182 implements a
programmable timer that allows termination of a device access even without READYn assertion. If
during a device access the time-out timer expires, the Device controller completes the transaction as

Doc. No. MV-S103345-01 Rev. C

Copyright © 2008 Marvell
Page 173

April 29, 2008, Preliminary Document Classification: Proprietary Information

—

= 88F5182

M ARVELL® UserManual

14.9

if READYn was asserted and generates an interrupt. This might result in bad data read/write from/to
the device. Setting the timer to 0x0 disables the timer, and the device controller waits for READYn
forever. The timer must be programmed to a number that must never be exceeded in normal
operation.

Additional Device Interface Signaling

To make it easy to glue external logic on the device bus, the 88F5182 supports burst and last
indication via MPP lines. BURSTn/LASTn is driven low on the address phase (It needs to be latched
via ALE[Q]) to indicate a burst access and is driven low on the last data phase to indicate the last
data transfer.

Figure 47 shows an example of these additional signals.

Figure 47: BURSTNn/DEV_LASTn Example

TCK o/ /S
ALE[1] \ \

ALE[0]

A

D [_Address PhO){Address Ph1)(Data 0 X Data 1) (I Address]

A [Address PhO_) Address Phi)(X) 00
BURSTn/ [Burst \ Last Data A Single
LASTn

14.10

NAND Flash Support

The 88F5182 device bus supports both chip enable (CE) care NAND Flash and CE don’t care NAND
Flash.

The difference between CE care NAND Flash and CE don't care NAND Flash is that chip enable
does not need to be continuously asserted low during the entire NAND Flash transaction. The
removal of this restriction allows chip enable to be deasserted between individual read or write
cycles, to enable sharing the read enable (RE) and write enable (WE) with other devices. CE care
NAND Flash devices require dedicated RE and WE signals provided through the MPP[1:0] pins.

14.10.1 NAND Flash Features
The device bus provides interface to NAND Flash with following features:
m Glueless interface to CE don’t care NAND Flash through the device bus interface
m Glueless interface to CE care NAND Flash through the device bus and MPP interfaces
m Boot from NAND Flash when the first block—placed on the 00h block address—is guaranteed
to be a valid block with no errors
m Read bursts of up to 128 bytes, splits the transaction to multiple bursts—eight beats each burst.
* 8 bytes in 8b device
* 16 bytes in 16b device
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 174 Document Classification: Proprietary Information April 29, 2008, Preliminary

14.10.2

14.10.3

14.10.4

Device Controller Interface
NAND Flash Support

Software Responsibilities

Software is responsible on the following:

m Following the appropriate guidelines, as specified in Section 14.10.3, Guidelines for Access to
NAND Flash, on page 175

Generating ECC
Checking ECC
Error recognition
Error correction
Error handling

Guidelines for Access to NAND Flash

EI These guidelines apply to both CE care NAND Flash and CE don'’t care NAND Flash.
Note

For both CE care and CE don't care NAND Flash devices, make sure bit <NF> is set to 1 in the
appropriate bank of the NAND Flash Control Register (Table 547 p. 485).

For CE care NAND Flash device, make sure bit <NFActCEn> is also set to 1 in the appropriate bank
of the NAND Flash Control Register. This bit may be cleared to 0 after the NAND Flash transaction
is completed.
m Command phase: write to NAND Flash with A[1:0] = 011

* Transaction length must be 1 byte in 8-bit NAND Flash.

* Transaction length must be 2 byte in 16-bit NAND Flash.
m Address phase: write to NAND Flash with A[1:0] = 10

* Transaction length must be 1 byte in 8-bit NAND Flash.

* Transaction length must be 2 byte in 16-bit NAND Flash.

Write Data phase: Single write transaction with A[1:0] = 00. Bursts are not allowed.

Read Data phase: Single or burst read transactions are allowed.

Polling (reading) the NAND Flash device status via the NAND Flash device Status Register,
which may be read to determine whether the program or erase operation is completed, and
whether the operation has completed successfully. Alternatively the ready busy (R/B) signal can
be connected to the 88F5182 MPP interface.

CE Don’t Care NAND Flash

When the 88F5182 is connected to CE don’t care NAND Flash devices, bit <NF> (NAND Flash) is
set to 1 and bit <NFActCEn> (CE Care NAND Flash) is cleared to O in the appropriate bank of the
NAND Flash Control Register.

The 88F5182 is connected to CE don't care NAND Flash devices using the 88F5182 device bus
interface as shown in Figure 48.

1. The device address is effected by the device width. In the 16-bit device, the address refers to 16-bit words, meaning the
address is shifted left in the device bus controller.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 175

®

—
=
—

M ARVELL®

88F5182
User Manual

Figure 48: Chip Enable Don’t Care NAND Flash

88F5182

CEn
Al

A0
OEn
WER[O]

D[15:0]

¢

>
>
>
>
>
-

14.10.5

CE Care NAND Flash

NAND Flash

RB
CE
ALE
CLE
RE

WE

1/0 15-0

The 88F5182 is connected to CE care NAND Flash via the device bus and the MPP interfaces as
shown in Figure 49.

When the 88F5182 is connected to CE care NAND Flash devices, bit <NF> (NAND Flash) is setto 1
in the appropriate bank of the NAND Flash Control Register (Table 547 p. 485) and bit <NFActCEn>
(in the same register) must be set to 1 before accessing the NAND Flash device. This bit may be

cleared to O after the NAND Flash transaction is completed.

Figure 49: CE Care NAND Flash Using MPPs

88F5182

CEn
MPP[x]
MPP[y]
Al1]
A[0]

D[7:0]

Doc. No. MV-S103345-01
Page 176

N

Note

Rev. C

Yyvyvyvy

NAND Flash

RB
CE

RE
WE

ALE
CLE

I/0 7-0

For the CE Care NAND Flash Pin Multiplexing on MPP Interface, see the multiplexing

section of the 88F5182 Datasheet.

Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Device Controller Interface
NAND Flash Controller Implementation

14.11 NAND Flash Controller Implementation

The NAND Flash controller implementation is shown in detailed in Figure 50 through Figure 52.
It is controlled by NAND Flash Control Register (Table 547 p. 485). Burst transactions are supported
by toggling the RE signal every read cycle as described in Figure 50.

Figure 50: Mask ALE during NAND Flash Read Data Phase

A[1] N
NFOEn ./ > ALl {New}

Figure 51: Generate Dedicated NAND Flash WE Signal
WEN[O . .
CEn[(i})) B WER[O](i) {connected to MPP i/f}

Figure 52: Generate CE Covers All NAND Flash Transaction

NF(i)
SNFACctCEN(i) 2—’_\ - CEn(i) {New}
CEnN(i)

14.12 Boot from NAND Flash

The 88F5182 supports booting directly from NAND Flash, when the first block—placed on 00h block
address—is guaranteed to be a valid block with no errors.

If the boot chip select is configured to NAND Flash—bit <NFBoot> is set to 1 in the NAND Flash
Control Register (Table 547 p. 485)—and bit <NFISD> is cleared to 0 in the NAND Flash Control
Register, an internal mechanism performs one of the sequences described in Section 14.12.1, Boot
from 8b NAND Flash or in Section 14.12.2, Boot from 16b NAND Flash. These sequences are
performed immediately after reset to issue the read command to the NAND Flash device. This
mechanism allows the CPU to perform sequential reads to the NAND Flash, starting from address
0x0, right after reset.

14.12.1 Boot from 8b NAND Flash

The Boot device width is defined by bootstrap.
1. Set CPU internal reset.

2. Write 8b to the NAND Flash to Address = 0x1 with data =0x0. Set NAND FLASH command to
Read.

Write 8b to the NAND Flash to Address = 0x2 with data =0x0. Set Address to 0x0.
Write 8b to the NAND Flash to Address = 0x2 with data =0x0. Set Address to 0x0.
Write 8b to the NAND Flash to Address = 0x2 with data =0x0. Set Address to 0x0.

Wait until NAND FLASH is ready with valid data, as define by the <NFTr> field in the NAND
Flash Control Register.

7. Clear CPU internal reset.

R

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 177

—
=
—

M ARVELL®

88F5182
User Manual

14.12.2 Boot from 16b NAND Flash

The Boot device width is defined by bootstrap.

1.
2.

o0k w

7.

Set CPU internal reset.

Write 16b to the NAND Flash to Address = 0x2 with data =0x0. Set NAND FLASH command to
Read.

Write 16b to the NAND Flash to Address = 0x4 with data =0x0. Set Address to 0x0.
Write 16b to the NAND Flash to Address = 0x4 with data =0x0. Set Address to 0x0.
Write 16b to the NAND Flash to Address = 0x4 with data =0x0. Set Address to 0xO0.

Wait until NAND FLASH is ready with valid data as define by the <NFTr> field in the NAND
Flash Control Register.

Clear CPU internal reset.

14.12.3 Boot from NAND Flash—Pins Sample Configuration

Sample at reset pins define if and how the 88F5182 boots from NAND Flash.

Reset configuration defines the default value of bit <NFBoot> in the NAND Flash Control
Register. This bit is internal pulled down to 0.

Reset configuration defines the default value of bit <NFActCEnBoot> in the NAND Flash Control
Register. This bit is internal pulled down to 0.

When the reset configuration of both <NFBoot> and <NFActCEnBoot> are set to 1, fields
<MPPSel4> and <MPPSel5> in MPP Control 0 Register (Table 601 p. 515) are set to 0x4.
Otherwise, these fields are cleared to 0x0.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 178

Document Classification: Proprietary Information April 29, 2008, Preliminary

IDMA Controller
Functional Description

15 IDMA Controller

The 88F5182 has four independent IDMA engines. The IDMA engines optimize system performance
by moving large amounts of data without significant CPU intervention.

Each IDMA engine can move data between any source to any destination. It can transfer a single
data buffer of up to 16 MB. It can also run in chain mode, in that mode each buffer has its own
descriptor.

15.1 Functional Description
IDMA unit contains four 512-byte buffers, one buffer per IDMA channel.

When a channel is activated, data is read from the source into the buffer, and then written to the
destination. Read and write transactions are handled independently. The IDMA engine transfers the
buffer in chunks of from 8 up to 128 bytes. The IDMA engine reads from the source as long as it has
place in the buffer. It writes to the destination, as long as there is valid data in the buffer to be
transferred. This independency results in concurrent reads and writes, and maximum utilization of
the IDMA interface.

The four channels share the same resources. They use fixed round-robin arbitration.

15.2 IDMA Descriptors

Each IDMA Channel Descriptor consists of four 32-bit registers. Each channel can be configured to
work in 64-KB Descriptor mode, or in 16-MB Descriptor mode, as shown in Figure 53.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 179

®
I;% 88F5182

M ARVELL® UserManual

Figure 53: IDMA Descriptors

Own Bit
64-KB Mode & 16-MB Mode
Remainder BC Byte Count Byte Count
Source Address Source Address
Destination Address Destination Address
Next Descriptor Pointer Next Descriptor Pointer
Table 55: IDMA Descriptor Definitions
IDMA Definition
Descriptor
Byte Count Number of bytes of data to transfer.

The maximum number of bytes to which the IDMA controller can be
configured transfer is 64 KB-1 (16-bit register) in 64 KB descriptor mode or 16
MB-1 (24-bit register) in the 16 MB descriptor mode.

This register decrements at the end of every burst of transmitted data from the
source to the destination. When the byte count register is 0, the IDMA
transaction is finished or terminated.

Own Bit When running in 16M descriptor mode, this bit indicates whether the
descriptor is owned by the CPU (0) or the IDMA engine (1).

Source Address Bits [31:0] of the IDMA source address.
According to the setting of the Channel Control register, this register either
increments or holds the same value.

Destination Address = Bits [31:0] of the IDMA destination address.
According to the setting of the Channel Control register, this register either
increments or holds the same value.

Pointer to the Next Bits [31:0] of the IDMA Next Descriptor address for chained operation.
Descriptor The descriptor must be 16 sequential bytes located at 16-bytes aligned
address (bits [3:0] are 0).
NOTE: This descriptor is used only used when the channel is configured to
Chained mode.

15.3 IDMA Address Decoding

The four IDMA channels share eight address windows. Each address window can be individually
configured.

With each IDMA transaction, the IDMA engine first compares the address (source, destination, or
descriptor) against its address decoding registers. Each window can be configured to a different
target interface. Address comparison is done to select the correct target interface.

If the address does not match any of the address windows, an interrupt is generated and the IDMA
engine halts.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 180 Document Classification: Proprietary Information April 29, 2008, Preliminary

IDMA Controller
IDMA Channel Control

For the IDMA engine to avoid accessing a forbidden address space (due to a programming bug),
each channel uses access protection logic that prevents it from having read/write access to specific
address windows. In the case of an access violation, the IDMA halts and an interrupt is asserted.

The IDMA also supports an address override feature. Each of the source, destination, or next
descriptor addresses can be configured to use the override feature by using the Channel Control
(Low) Register (Table 562 p. 492) register’'s <SAddrOvr> bits [22:21], <DAddrOvr> bits [24:23], and
<NAddrOvr> bits [26:25]. When the respective field is set to 0x1, the transaction target interface,
attributes, and upper 32-bit address are taken from The Base Address register (BAR) 1. When set to
0x2, these items are taken from BAR 2. And when set to 0x3, they are taken from BAR 3. See the
Base Address Register x (Table 557 p. 490).

This address override feature, enables additional address decoupling. For example, it allows the use
of the same source and destination addresses while the source is targeted to one interface and
destination to a second interface.

15.4 IDMA Channel Control

Each IDMA Channel has its own unique control register where certain IDMA modes are
programmed. The following are the bit descriptions for each field in the control registers.

154.1 Address Increment/Hold

The IDMA engine supports both increment and hold modes, on both source and destination
addresses.

If the <SrcHold> bit [3] in the Channel Control (Low) Register (Table 562 p. 492) is set to 0, the
IDMA automatically increments the source address with each transfer. If this bit is set to 1, the
source address remains constant throughout the IDMA burst.

Similarly, If the <DestHold> bit [5] in the same register is set to 0, the IDMA automatically increments
the destination address. If this bit is set to 1, the destination address remains constant throughout
the IDMA burst.

Setting the <SrcHold> or <DestHold> bits is useful when the source/destination device is accessible
through a constant address. For example, if the source/destination device is a FIFO, it is accessed
with a single address, while data is being popped/pushed with each IDMA burst.

|§ | | When using Hold mode, the address is restricted to be aligned to the Burst Limit setting,
see the Channel Control (Low) Register <SrcBurstLimit>bits [8:6] and
Note <DstBurstLimit>bits [2:0].

15.4.2 Burst Limit
The IDMA byte count is chopped into small bursts.

The burst limit can vary from 8 to 128 bytes in modulo-2 steps (i.e. 8, 16..., 128). It determines the
burst length of IDMA transaction against the source and destination. There are separate Burst Limit
parameters for source and destination. For example, setting the source burst limit to 32 bytes and
the destination burst limit to 128 bytes, means that the IDMA reads 32 bytes from the source, and
then writes the data to the destination after combining to 128 bytes. The IDMA continues this
read/write loop until transfer of the whole byte count is complete.

The burst limit setting is affected by the source and destination characteristics, as well as system
bandwidth allocation considerations.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 181

—

= 88F5182
M ARVELL® UserManual

|§ | | Regardless of the burst limit setting, the fetch of a new descriptor is always a 16-byte
burst. This implies that descriptors cannot be located in devices that do not support

Note such bursts.

15.4.3 Chain Mode

When <ChainMode> bit [9] in the Channel Control (Low) Register (Table 562 p. 492) is set to 0,

chained mode is enabled.

In chain mode, at the completion of one buffer transfer, the Pointer to Next Descriptor provides the
address of a next IDMA descriptor. If it is a NULL pointer (value of 0), it indicates that this is the last
descriptor in the chain. If not, the IDMA engine fetches the new descriptor, and starts transferring the

new buffer.

Figure 54 shows an example of an IDMA descriptors chain.

Figure 54: Chained Mode IDMA

Byte Count
Source Address
Destination Address
Next Descriptor Pointer (0x10)
Ox10 Byte Count
Ox14 Source Address
0Ox18 Destination Address
Ox1c | Next Descriptor Pointer (0x100)
0x100 Byte Count
0x104 Source Address
0x108 Destination Address
0x10cC | Next Descriptor Pointer (0x200)
0x200 Byte Count
0x204 Source Address
0x208 Destination Address
0x20c Null Pointer (0x0)
Doc. No. MV-S103345-01 Rev. C
Page 182 Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

IDMA Controller
IDMA Channel Control

Fetch next descriptor can be forced by <FetchND> bit [13] in the Channel Control (Low) Register.

Setting this bit to 1 forces a fetch of the next descriptor based on the value in the Pointer to Next
Descriptor register.

This bit can be set even if the current IDMA transaction has not yet completed. In this case, the
IDMA engine completes the current burst read and write and then fetches the next descriptor. This
bit is reset to O after the fetch of the new descriptor is complete. Setting <FetchND> is not allowed if
the descriptor equals Null.

| ;] | If using the <FetchND> bit while the current IDMA transaction is in progress, the <Abr>

Not bit [20] in the Channel Control (Low) Register must be set.
ote

The first descriptor of a chain can be set directly by programming the channels registers, or can be
fetched from memory, using the <FetchND> bit. If fetched from memory, the next descriptor address
must be first written to the Next Descriptor Pointer register of the channel. The channel then must be
enabled by setting <ChanEn> bit [12] in the Channel Control (Low) Register to 1 (see

Section 15.4.4, Channel Activation, on page 183) and setting <FetchND> to 1.

When the IDMA transfer is done, an IDMA completion interrupt is set. When running in chain mode,
<IntMode>, bit [10] of the in the Channel Control (Low) Register, controls whether to assert an
interrupt on the completion of every byte count transfer or only upon last descriptor byte count
completion. If set to 0, <Comp> bit [0] in the Interrupt Mask Register (Table 565 p. 495) is set every
time the IDMA byte count reaches 0. If set to 1, the <Comp> bit is asserted when both the Pointer to
Next Descriptor Register has a NULL value and byte count is 0.

If <ChainMode> in the Channel Control (Low) Register is set to 1, chained mode is disabled and the
Pointer to Next Descriptor register is not loaded at the completion of the IDMA transaction.

initialized prior to enabling the channel.
If upon reading a new descriptor, the read data is marked by the target unit as
erroneous, and the channel halts.

m [f using <FetchND> to fetch the first descriptor and the <IntMode> bit is setto 0, a
dummy IDMA completion interrupt is asserted with this first fetch. Although, no
data has been transferred.

EI m In non-chained mode, the Byte Count, Source, and Destination registers must be

Note

15.4.4 Channel Activation
Software channel activation is done via the Channel Control (Low) register's <ChanEn> bit [12].

When set to 0, the channel is disabled. When set to 1, the IDMA is initiated based on the current
setting loaded in the channel descriptor (i.e., byte count, source address, and destination address).
An active channel can be temporarily stopped by clearing the <ChanEn> bit and then the active
channel can be continued from the point it was stopped by setting <ChanEn> bit back to 1.

Clearing the <ChanEn> bit during IDMA operation does not guarantee an immediate channel pause.
The IDMA engine must complete transferring the last burst it was working on. Software can monitor
the channel status by reading <ChanAct> bit [14].

To restart a suspended channel in non-chained mode, the <ChanEn> bit must be set to 1. In
Chained mode, the software must find out if the first fetch took place. If the fetch did take place, only
<ChanEn> bit is set to 1. If the fetch did not take place, the <FetchND> bit must also be set to 1.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 183

—

= 88F5182
M ARVELL® UserManual

The <ChanAct> bit is read only. If set to 0, the channel is not active. If set to 1, the channel is active.
In Non-chain mode, this bit is de-asserted when the byte count reaches zero. In chain-mode, this bit
is de-asserted when the pointer to the next descriptor is NULL and byte count reaches zero.

If the <ChanEn> bit is set to 0 during IDMA transfer, the <ChanAct> bit toggles to 0 as soon as the
IDMA engine finishes the last burst it is working on.

To abort an IDMA transfer in the middle, the software must set <Abr> bit to 1. Setting this bit has a
similar effect to clearing <ChanEn> bit. However, it guarantees a smooth transfer of the IDMA
engine to idle state. As soon as the IDMA is back in idle state, the <Abr> bit is cleared, allowing the
software to re-program the channel.

writes all of the remaining data in the FIFO to the destination.

EI m When a channel is stopped, it completes the last read from the source, and then
If the byte count is smaller than the burst limit setting, the source and destination

Note addresses must be 64-bit aligned.
m If the close descriptor feature is used, only set the Abr bit after first clearing the
<ChanEn> bit and then clearing the <ChanAct> bit.
15.4.5 Source and Destination Addresses Alignment

The IDMA implementation maintains aligned accesses to both source and destination.

If source and destination addresses have different alignments, the IDMA performs multiple reads
from the source to execute a write of full BurstLimit to the destination. For example, if the source
address is 0x4, the destination address is 0x100, and BurstLimit of both source and destination is
set to 8 bytes, the IDMA perform two reads from the source. It first reads 4 bytes from address 0x4
and then reads 8 bytes from address 0x8, and only then performs a write of 8 bytes to address
0x100.

This implementation guarantees that all reads from the source and all writes to the destination have
all byte enables asserted (except for the buffer start/end, in case they are not aligned). This is
especially important when the source device does not tolerate reads of extra data (destructive
reads) or when the destination device does not support write byte enables.

15.4.6 Descriptor Ownership

A typical application of chain mode IDMA involves the CPU preparing a chain of descriptors in
memory and then preparing buffers to move from source to destination. Buffers may be dynamically
prepared, i.e., once a buffer was transferred the CPU can prepare a new buffer in the same location
to be sent. This application requires some handshake between the IDMA engine and the CPU.

When working with the 16 MB descriptor mode, Channel IDMA Byte Count Register

(Table 552 p. 489) <Own> bit [31] acts as an ownership bit. If set to 1, the descriptor is owned by the
88F5182 IDMA. If set to 0, it is owned by the CPU. Once the CPU prepares a buffer to be
transferred, it sets the ownership bit. This indicates that the buffer is owned by the IDMA. Once the
IDMA completes transferring the buffer, it closes the descriptor by writing back the upper byte of the
Byte Count register (bits [31:24]), with MSB set to 0, indicating to the CPU that the buffer was
transferred. When the CPU recognizes that it owns the buffer, it is allowed to place a new buffer to
be transferred. An attempt by the IDMA to fetch a descriptor that is owned by CPU (i.e., the CPU did
not yet prepare a new buffer), results in an interrupt assertion and an IDMA channel halt.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 184 Document Classification: Proprietary Information April 29, 2008, Preliminary

IDMA Controller
IDMA Interrupts

EI This feature is not supported in 64-KB Descriptor mode.
Note

The Descriptor is closed when the byte count reaches 0 or when transfer is terminated in the middle
via the fetch next descriptor command. In this case, the transfer may end with some data remaining
in the buffer pointed by the current descriptor.

When working in 64-KB Descriptor mode, when closing the descriptor, the IDMA engine writes the
left byte count to the upper 16-bit of the byte count field of the descriptor. This is useful if an IDMA is
terminated in the middle and a CPU might want to re-transmit the left byte count. In case the IDMA
ended properly (all byte count data was transferred), a 0 value is written back to the descriptor.

When working with the 16-MB Descriptor mode, there is an alternative way to signal to the CPU that
the descriptor was not completely transferred. In this case, the IDMA engine rather than writing back
the remaining byte count, it writes back to only bits [31:24] of the descriptor’s <ByteCount> field, with
bit [30] indicating whether the whole byte count was transferred (0) or terminated before transfer
completion (1). Bits [29:24] are meaningless.

Each IDMA channel has a Current Descriptor Pointer register (CDPTR) associated with it. This
register is used for closing the current descriptor before fetching the next descriptor. The register is a
read/write register but the CPU must not write to it. When the NPTR (Next pointer) is first
programmed, the CDPTR reloads itself with the same value written to NPTR. After processing a
descriptor, the IDMA channel updates the current descriptor using CDPTR, saves NPTR into the
CDPTR, and fetches a new descriptor.

15.5 IDMA Interrupts

The IDMA interrupts are registered in the Interrupt Cause Register (Table 564 p. 495) register. Upon
an interrupt event, the corresponding cause bit is set to 1. It is cleared upon a software write of 0.

The IDMA Mask registers control whether an interrupt event causes an interrupt assertion. The
setting of the mask register only affects the interrupt assertion, it has no effect on the cause register
bits setting.

The following interrupt events are supported per each channel:

IDMA completion

IDMA address out of range

IDMA access protect violation

IDMA write protect violation

IDMA descriptor ownership violation

In the case of an error condition (address out of range, access protect violation, write protect
violation, descriptor ownership violation), the IDMA transaction address is latched in the Address
Error register. Once an address is latched, no new address (due to additional errors) can be latched,
until the current address is read.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 185

—

= 88F5182
M ARVELL® UserManual

16 XOR Engine

The XOR engine is a generic acceleration engine for storage applications that provides a low
latency, high throughput xor calculation capabilities, enabling CPU xor calculation off-loading in
various RAID implementations. In addition, the XOR engine provides iSCSI CRC32C calculation,
DMA operation, memory initialization, and memory ECC errors cleanup operation support.

The XOR engine enables PC/Server manufactures (ROM), Internal RAID Controllers and External
RAID systems to speed up overall system performance.

XOR engine features:

m Two separate channels for enabling concurrent operation (e.g., concurrent XOR and iSCSI
CRC32C calculations).

1KB temporary result store queue per channel. Arranged as 128 X 8B buffer.
Support packing/unpacking of unaligned data transfers.

XOR calculation for up to eight data block sources.

Data block size up to 16 MB.

Programmable maximum burst size on read and write.

Descriptor chain mechanism.

Hot insertion of new descriptors to chain.

iSCSI CRC32C calculation that is compliant with IPS iSCSI version 13 draft.
DMA operation.

Memory initialization support.

Memory ECC cleanup support.

Write access protection of configuration registers.

16.1 Theory of Operation

XOR engine unit (XEunit) has five main operation modes:
XOR calculation Mode (XOR)

iSCSI CRC32C Calculation Mode (CRC)

DMA Operation Mode (DMA)

Memory initialization Mode (Memlnit)

Memory ECC error cleanup mode (ECC)

The XOR engine has two independent channels. Each channel can be configured to one of the
operation modes at a time. The operation mode is defined through the <OperationMode> field in the
XOR Engine [0..1] Configuration (XExCR) (Table 570 p. 500)(bits[2:0]). In the XOR, CRC and DMA
operation modes, the XOR engine is controlled by chain descriptors and responds to similar
activation scheme. These modes differ only in the interpretation of the chain descriptor fields. In
ECC and MemlInit modes, the XOR engine responds to different activation schemes. It is controlled
by programming internal registers directly. On all operation modes, XOR engine uses the same
address decoding scheme.

Upon startup, the two XOR engine channels are in an inactive state and can be configured to any
operation mode (XOR, CRC, DMA, Memlnit or ECC). After being configured, the XOR engine
channel can be activated. It can be stopped or paused by software at any time. After stopped by
software, the engine re-enters inactive state and can be configured to another operation mode and
re-activated. This also applies if the XOR engine channel finished the operation (reached End Of

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 186 Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine

Theory of Operation

Chain) without being stopped by the software. Again, the engine re-enters an inactive state and can
be configured to another operation mode, and re-activated. After paused by software, the XOR
engine channel suspends the current operation at the earliest opportunity. Upon activating the
channel again, it resumes executing the same operation.

N
Note

The two XOR engine channels are independent in their operation modes. The only
exception is that both engines must not be configured to ECC or Memlnit operation
modes. These modes share hardware resources.

Attempting to change the channels operation mode during a pause will result in

unexpected behavior.

16.1.1 XOR Operation

The XOR engine enables block xor calculation in hardware. It performs the xor operation on
multiple blocks of source (incoming) data and stores the result back in a destination block.
The source and destination addresses are specified through a chain descriptor.

Figure 55 shows how the XOR operation works with multiple blocks of source (incoming) data and
stores the result back in a destination block.

Figure 55: XOR Operation with Multiple Incoming Data Blocks

Source 0

Source 1

n

oy

e

XOR Engine

Source n

88F5182

Destination = (source 0) xor (source 1) ... xor (source n)

Number of sources can be upto 8 (n =7)

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Document Classification: Proprietary Information

L

Destination

Doc. No. MV-S103345-01 Rev. C

Page 187

—

= 88F5182

M ARVELL® UserManual

The parameters of the XOR operation are configured by writing the relevant information to a chain
descriptor. The relevant parameters consist of source addresses, destination addresses, the number
of bytes to transfer, and various control information.

When activated in XOR mode, the XOR engine fetches the first descriptor and starts performing the
XOR operation according to its parameters. After finishing the operation, the XOR engine closes the
descriptor by writing back the status word to the descriptor and returning the ownership of it to the
CPU. The XOR engine checks whether it reached the end of the descriptor chain. If it is the end, the
engine enters an inactive state and waits to be re-activated by software. If it did not reach the end of
the chain, it progresses to the next descriptor, and so on.

The Basic XOR operation algorithm is as follows:

1. Read data from the first enabled source block to the internal buffer.

2. Read from the second enabled source block and calculate xor with the data from the internal
buffer. The intermediate result is stored in the internal buffer.

3. Step 2 is repeated for the rest of the source buffers until all enabled source buffers are handled
(up to 8 sources).

4. Write the internal buffer to the destination buffer.
5. Repeat steps 1-4 until the descriptor byte count in is reached.

16.1.2 ISCSI CRC32C Calculation
In addition to the XOR operation, the XOR engine also provides iSCSI CRC32C calculation
capabilities. It performs iISCSI CRC32C calculation on a source block and writes the result back to a
descriptor, as shown in Figure 56.
Figure 56: XOR iSCSI CRC32C Operation
Source
Read one block
Write result
i i to destination
ISCSI CRC32C Engine > Destination
! 88F5182
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 188 Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
Theory of Operation

The source blocks are specified through a chain of descriptors. Parameters of the iISCSI CRC32C
operation are configured in the same way as in XOR operation - writing the relevant information to a
chain descriptor. The relevant parameters consist of source addresses, destination address, size of
source block, and "last block in CRC source chain" indication.

The CRC source block in CRC mode can be scattered over a few target blocks. It can be in
non-consecutive memory spaces and even in different interfaces. The CRC Source block is
represented by a source block chain of descriptors. Every descriptor represents one consecutive
section of the CRC source block.

When activated in CRC mode (<OperationMode> field of the channel Configuration Register -
XEOCR or XE1CR - is set to CRC), XOR engine executes iSCSI CRC32C calculation according to
the source block chain. The last descriptor in a source block chain is marked as "last". After the
calculation is finished, the 32-bit result is written to the CRC source block chain’s last descriptor.

The chain descriptor operation is slightly different in XOR mode. In XOR mode, every descriptor
stands for a self contained XOR operation. In CRC mode, one CRC operation (one CRC source
block) can be represented by a number of chain descriptors, thus enabling concatenation of a few
data sources to one block, for CRC calculation. The descriptor chain is constructed of several
source block chains.

The Basic iSCSI CRC32C operation is as follows:

1. Read data from the source block to internal buffer.

Calculate iISCSI CRC32C on the internal buffer and store intermediate result.

Repeat step 1-2 for the rest of the source block, until all of the blocks are processed.
Repeat steps 1-3 for the rest of the blocks in the source block chain.

Write result to the last descriptor.

16.1.3 DMA Operation

The XOR engine also provides generic DMA capabilities - copying of a source block to a destination
block. The source blocks are specified through a chain of descriptors. Parameters of the DMA
operation are configured in the same way as in XOR operation - by writing the relevant information
to a chain descriptor. The relevant parameters consist of source address, destination address, and
size of source block.

ok wDn

When activated in DMA mode, the XOR engine fetches the first descriptor and starts performing the
DMA operation according to its parameters. After finishing the operation, the XOR engine closes the
descriptor by writing back status word to the descriptor and returning the ownership of it to the CPU.
The XOR engine checks whether it reached the end of the descriptor chain. If the end has been
reached, the engine enters an inactive state and waits to be re-activated by the software. If it did not
reach the end of the chain, it progresses to the next descriptor, and so on.

16.1.4 Memory Initialization

The XOR engine provides memory initialization capabilities. It performs writes of pre-defined value
to a destination memory block. The destination address and block size are specified directly by
internal registers. The relevant parameters consist of a destination address, an initial memory value,
and a size of the destination block.

Only one channel may be configured to Meminit mode at a time. If both channels are

Not configured to MemlInit mode, engine behavior is unexpected.
ote

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 189

—

= 88F5182

M ARVELL® UserManual

16.1.5

When activated in MemInit mode, the XOR engine executes a memory initialization operation
according to the relevant internal registers. It will write the 64-bit initial value, specified by the XOR
Engine Initial Value Low (XEIVRL) (Table 589 p. 511) and XOR Engine Initial Value High (XEIVRH)
(Table 590 p. 511) Registers, in a cyclical method to the destination block. Upon completion of the
memory initialization operation, the XOR engine channel asserts the EOC interrupt.

Memory ECC Errors Cleanup (Scrubbing)

The XOR engine provides a single bit ECC error cleanup capabilities. It scans for ECC errors on a
pre-defined destination block in DRAM. If a single bit error is detected, it is fixed. If two or more
errors are detected (non correctable ECC errors), an interrupt is asserted by memory controller.

The memory ECC errors cleanup operation is based on the 88F5182 DRAM RMW feature. Upon a
write request to memory, with all byte enables inactive, the DRAM controller initiates an automatic
RMW operation, without changing the data. If during the read portion of the RMW, the controller
detects a single bit error (or no error at all), it corrects the data and writes it back to memory. In case
of a two bit error detection, the DRAM controller asserts an interrupt.

Parameters of the memory ECC error cleanup operation are configured in the same way as in
memory initialization operation - by writing the relevant information to internal registers. The relevant
parameters consist of the destination address and the size of destination block.

| ;I | Only one channel may be configured to ECC mode at a time. If both channels are

Not configured to ECC mode, engine behavior is unexpected.
ote

In addition, the ECC operation supports a timer mode that enables periodic activation of the ECC
cleanup operation, to a small target block at a time. This avoids long periods of memory usage by
the ECC operation, which can interfere with the normal system operation. Moreover, ECC errors
cleanup can run in the background, without CPU involvement. Once the CPU configures the
parameters for the ECC operation, the ECC errors cleanup takes place periodically, without any
CPU intervention. The destination block is divided into sections according to the <SectionSizeCtrl>
field in the XOR Engine Timer Mode Control (XETMCR) (Table 586 p. 510) (bits[12:8]).

The period between cleanup of sequential sectors is controlled by the ECC timer - a 32-bit wide
timer integrated in the XOR engine. With every expiration of the ECC timer, another section of the
target block is cleaned. Both channelO and channell are coupled to the ECC timer. The timer
decrements with every TCLK cycle. Upon expiration, the cleanup of the relevant sector is initiated,
the timer issues a timer expiration interrupt, reloads itself to the programmed initial value, and
initiates a new count down. Reads from the timer are done from the counter itself, while writes are to
its register. This means that read results are in the counter’s real time value. The timer is only
enabled if one of the XOR engine channels is set to ECC timer mode operation.

If activated in timer mode, the XOR engine enables timer count-down, waits for timer expiration,
cleans the first memory section, and asserts EOD interrupt. It then waits for the second expiration,
cleans the second section and asserts another EOD interrupt, and so on. When the XOR engine
reaches the end of the target block, it asserts an EOC interrupt and re-starts cleaning the first
memory section. To stop the operation, set <XEstop> field in the XOR Engine [0..1] Activation
(XEXACTR) (Table 571 p. 501)(bit[1]).

If activated in non-timer mode, the whole target block will be processed at one time and the XOR
Unit becomes inactive.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 190

Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
Descriptor Chain

| ;I | If the destination block is not 8 byte aligned, the XOR engine initiates write requests to

Not the smallest 8 byte aligned block that contain the original block
ote

16.2 Descriptor Chain
16.2.1 Descriptor Format

The XOR engine descriptor format supports 32-bit addressing. In XOR mode, the descriptor consists
of sixteen 32-bit words totalling the 64B size of each descriptor. In CRC and DMA modes, only the
upper 32B of the descriptor is needed. Therefore, the descriptor consists of eight 32-bit words,
totalling to a 32B size for each descriptor, see Figure 57.

By fetching a descriptor from memory, the XOR engine gets all the information about the next
operation to be performed. When the XOR engine finishes the operation associated with a
descriptor, it closes the descriptor by updating the status word. This means the operation completed
successfully and returns the ownership of the descriptor to the CPU.

|§ | | Chain descriptor operation is valid only in XOR, CRC and DMA operation modes. In
ECC and MemlInit modes, the XOR engine gets the operation data directly from its

Note internal registers.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 191

®
I;% 88F5182

M ARVELL® UserManual

Figure 57: XOR Descriptor Format

31 0
0x0 : Status
Ox4 CRC-32 Result
0x8 Command
CRC & DMA < 0xC Next Descriptor Address
Descriptor 0x10 | Byte Count
0x14 Destination Address
0x18 Source Address #0
XOR _ 0x1C Source Address #1
Descriptor 0x20 Source Address #2
0x24 Source Address #3
0x28 Source Address #4
0x2C Source Address #5
0x30 Source Address #6
0x34 Source Address #7
0x38 Reserved
K 0x3C Reserved

The XOR descriptor must be 64 Bytes aligned (Address[5:0]=0). The CRC and DMA
| ;I | descriptors must be 32 Bytes aligned (Address[4:0]=0). There are no restrictions on
source or destination data block alignment. Source and destination blocks can have

Note

Doc. No. MV-S103345-01 Rev. C

Page 192 Document Classification: Proprietary Information

different alignments. Different source blocks can have different alignments as well.

Copyright © 2008 Marvell
April 29, 2008, Preliminary

XOR Engine
Descriptor Chain

Table 56: Descriptor Status Word Definition

Bit Field
29:0 Reserved

30 Success

31 Own

Description
Reserved.

Successful descriptor execution indication.
Indicates whether the operation completed successfully.
0 = Completed unsuccessfully - Transfer terminated before the whole byte count was
transferred.
1 = Completed successfully - The whole byte count transferred.
That field is updated upon closing the descriptor
NOTE: In ECC cleanup mode the success bit indicates successful execution, even if ECC
errors where found and not corrected.

Ownership Bit
Indicates whether the descriptor is owned by the CPU or the XOR engine.
0 = CPU owned.
1 = XOR engine owned.
That field is updated upon closing a descriptor - XOR engine gives back ownership to the CPU
by clearing the own bit.

Table 57: Descriptor CRC-32 Result Word Definition

Bit Field

31:.0 CRCresult

Description

Result of CRC-32 calculation

Valid only in the last descriptor of a CRC source block chain, after it was closed by the XOR
engine.

NOTE: Valid only in CRC mode.

Table 58: Descriptor Command Word Definition

Bit Field

0 SrcOCmd
1 Src1Cmd
2 Src2Cmd
3 Src3Cmd
4 Src4Cmd

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Description

Specifies the type of operation to be carried out on the data pointed by SA#0 (Source Address 0
word of the descriptor).
0x0 = Null Command - Data from Source will be disregarded in the current descriptor
operation.
0x1 = XOR Command - Data from source will be transferred and will be significant in the XOR
calculation.
NOTE: Relevant only on XOR operation mode. disregarded in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#1 (Source Address #1
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#2 (Source Address #2
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#3 (Source Address #3
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#4 (Source Address #4
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Doc. No. MV-S103345-01 Rev. C

Document Classification: Proprietary Information Page 193

M ARVELL®

—
=
—

88F5182
User Manual

Table 58: Descriptor Command Word Definition (Continued)

Bit

5

29:8
30

31

Field
Src5Cmd

Src6Cmd

Src7Cmd

Reserved

CRClLast

EODIntEn

Description

Specifies the type of operation to be carried out on the data pointed by SA#5 (Source Address #5
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#6 (Source Address #6
word of the descriptor).
NOTE: Relevant only on XOR operation mode. disregarded in all other operation modes.

Specifies the type of operation to be carried out on the data pointed by SA#7 (Source Address #7
word of the descriptor).
NOTE: Relevant only on XOR operation mode. Disregard in all other operation modes.

Reserved

Indicated last descriptor in a CRC-32 calculation chain.

0 = Not last descriptor in a CRC calculation chain.

1 = Last descriptor in a CRC calculation chain. When closing the descriptor, the XOR engine
writes the CRC result to its CRC-32 Result word. The next descriptor in the descriptor chain
initiates a new CRC calculation. If the source block is represented by one descriptor only, it
should be marked as last.

NOTE: Relevant only in CRC operation mode.

End Of Descriptor Interrupt Enable.

Specifies if the EOD interrupt is asserted upon closure of that descriptor.
1 - EOD Enabled.

0 - EOD Disabled.

Table 59: Descriptor Next Descriptor Address Word

Bits

31:0

Field
NDA

Description

Next descriptor address pointer

XOR Mode: NDA must be 64-byte aligned (bits[5:0] must be 0x0).
CRC/DMA Mode: NDA must be 32-byte aligned (bits[4:0] must be 0x0).
NDA field of the last descriptor of a descriptor chain must be NULL.

Table 60: Descriptor Byte Count Word

Bit

23:0

31:24

Field

ByteCount

Reserved

Description

XOR mode: Size of source and destination blocks in bytes.

CRC mode: Size of source block part represented by the descriptor.
DMA mode: Size of source and destination block in bytes.

Minimum blocks’ size: 16B.

Maximum blocks’ size: 16MB-1

Reserved.

Table 61: Descriptor Destination Address Word

Bits Field Description
31:.0 DA Destination Block address pointer
XOR Mode: Destination Block address pointer.
CRC mode: Not used.
DMA mode: Destination Block address pointer.
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 194

Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
Address Decoding

Table 62: Descriptor Source Address #N Words

Bits Field Description
310 SA#0O source block #0 address pointer.
Source XOR Mode: Source Block #0 address pointer.
Address #0 CRC mode: Address pointer to part of source block represented by the descriptor.

DMA Mode: Source Block address pointer.

31:0 SA#N source block #N address pointer.
[N=1..7] XOR mode: Source Block #N address pointer.
Source CRC mode: Not used.

Address #N DMA mode: Not used.

16.3 Address Decoding

The XOR engine has eight address windows that can be individually configured. With each
transaction, the XOR engine first compares the address (source, destination, or descriptor) against
the address decoding registers. Each window can be configured to a different target interface.
Address comparison is done to select the correct target interface. If the address does not match any
of the address windows (no hit), an interrupt is generated and the XOR engine is stopped. If the
address matches more than one address window (multiple hit), an interrupt is generated and the
XOR engine is stopped

For the XOR engine to avoid accessing forbidden address space (due to a programing bug), each
channel uses access protection logic that prevents it from read/write access to specific address
windows. In case of access violation, the operation is stopped, the channel becomes inactive, and
an interrupt is asserted.

16.3.1 Target Interface

Source data blocks, destination data block, and descriptors can be targeted to any of the device’s
Interfaces. The unique attributes of each interface are configured per address window through the
XOR engine BARs (Base Address Registers), see Appendix A.16.4, XOR Engine Address Decoding
Registers, on page 505.

16.3.2 64-bit Addressing

Four of the eight address windows have an upper 32-bit address register. These are used for
accessing interfaces that support more than 4 GB of address space. The address generated on the
interface is composed of the 32-bit address issued by the XOR DMA, if it hits the relevant address
window, concatenated with the High Remap register.

EI The XOR DMA address decoder can map total of up to 4 GB address space.
Note

16.3.3 Address Override

The XOR engine also supports an address override feature. Each of the sources, destination, or
next descriptor addresses of each channel, can be configured to use the override feature by using
the XOR Engine [0..1] Address Override Control (XEXAOCR) (Table 583 p. 507). When override is
enabled and the respective pointer field is set to Ox0, the transaction target interface, and attributes,
are taken from the Base Address register 0 (XEBARO) and the upper 32 bits of the 64 bit address

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 195

—

= 88F5182

M ARVELL® UserManual

16.4

16.4.1

are taken from High Address Remap Register 0 (XEHARRO). When set to 0x1, these items are
taken from XEBAR1and XEHARRL1 respectively, and so on for pointer values of 0x2 and 0x3.

This address override feature, enables additional address de-coupling. For example, it allows the
use of the same source and destination addresses, while the source is targeted to one interface and
destination to a different interface.

|§ | | When using the address override option, no window access control is performed. For
example if override is set to SA#5 of channel 1, any address that is specified in the
Note descriptor as SA#5 is directly accessed without any window access control check.

Arbitration

The two XOR engine channels and the four IDMA channels share the same crossbar port. The
arbitration is performed in two steps. First, an arbitration between the two XOR engine channels and
in parallel arbitration between the four IDMA channels. Second, an arbitration between the chosen
XOR engine channel and the chosen IDMA channel is performed.

Arbitration Between XOR Engine Channels

The two XOR engine channel use the same crossbar port. A programmable weighted round robin
arbiter controls the bandwidth allocation for each channel on the crossbar port. Each channel can be
configured to have a different bandwidth allocation. Figure 58 shows an example of the arbitration
cycle.

Figure 58: Programmable Channel Pizza Arbiter

Arbitration
Ncle

cho Chi

Cho

Ch1l ChO

Current

Cho

The pizza arbiter has 8 slices, each slice can be configured to serve a different channel. In Figure
58, channel0 gets 75% of the bandwidth, and channell 25% each. At each clock cycle, the arbiter
samples all channels requests and gives the bus to the next channel according to the “pizza” setting.

The bandwidth allocation is flexible. The arbiter influences the bandwidth allocation only when two
ports demand crossbar port service at the same time (congestion conditions). If only one channel

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 196

Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
XOR Engine Programming

demands crossbar bandwidth, the channel receives 100% of the bandwidth. For example, in Figure
58, only ChannelO is active and so it gets 100% of the crossbar port bandwidth.

16.4.2 Arbitration between XOR Engine and IDMA

A fixed round robin arbitration is performed between the XOR engine and the IDMA. If both are
active, the effective bandwidth allocation in congestion conditions is approximately 50% for each
unit.

16.5 XOR Engine Programming
16.5.1 Programming in XOR, CRC, and DMA modes

The XOR engine operation is similar in XOR, CRC, and DMA modes. All of these modes use
descriptor chains. The modes differ in their configuration parameters and in their chain descriptor
size and field interpretation.

16.5.1.1 Activation On Startup

To activate an XOR engine for the first time after Reset de-assertion, the software must perform the

following sequence:

1. Confirm that the relevant XOR engine channel is inactive (<XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) (Table 571 p. 502).

2. Initialize the relevant XOR engine channel configuration (XOR Engine [0..1] Configuration

(XEXCR) (Table 570 p. 500)).

Prepare the descriptor (or chain of descriptors) in memory.

Update the relevant XOR Engine [0..1] Next Descriptor Pointer (XEXNDPR) (Table 576 p. 504).

Set <XEstatus> in the relevant XOR Engine [0..1] Activation (XEXACTR) register.

When the XOR engine activates the relevant channel (<XEstatus> field in XEOACTR or
XE1ACTR is set).

When activated (<XEstatus> is set), the XOR engine fetches the descriptor pointed by the XOR
Engine [0..1] Next Descriptor Pointer (XEXNDPR), and starts performing the operation on it. Upon
completion of the operation it progresses to the next descriptor. It continues this operation until it
reaches the end of the descriptor chain (Next descriptor Address field of current descriptor = NULL).
When it reaches the end of the chain, the XOR engine asserts an interrupt (EOC - End Of Chain
interrupt), clears the <XEstatus> bit and enters an inactive state. This inactive state is equal to the
initial state of XOR engine upon startup.

S

16.5.1.2 Update Descriptor Chain

A new descriptor can be added to the chain even when the XOR engine is active (<XEstatus>=1).

The software adds new descriptors to the descriptor chain by performing the following:
1. Prepares new descriptors (or chain of descriptors) in memory.
2. Updates the next descriptor address field in the former last descriptor.

|§ | | Pay attention that the ownership mechanism is violated in that case - CPU will write to a
XOR engine owned descriptor (the former last one), but that does not affect the XOR
Note engine operation.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 197

—

= 88F5182

M ARVELL® UserManual

16.5.1.3

16.5.1.4

Pause Operation

The pause operation enables a temporary halt of the current descriptor chain processing and then a
continuation of it without any impact on the execution, except the delay caused by the pause period.
When paused the XOR engine channel does not initiate any requests to the crossbar, releasing its
resources to other units.

The pause operation can be used for boosting performance of a mission critical process for a
specific time period. After the critical time period is over, the software signals the XOR engine
channel to continue processing the current descriptor chain from the point at which it was paused.
The software can pause the XOR engine channel operation during an active phase by performing
the following:

1. Confirm that the relevant XOR engine channel is active (<XEstatus> bit in the Activation
Register - XEOACTR or XE1ACTR- is set). If it is not active, the pause operation is not
necessary.

2. Set <XEpause> in the relevant XOR Engine [0..1] Activation (XEXACTR) register (see Table
571 on page 501).

3. Check the relevant <XEstatus> field in the XOR Engine [0..1] Activation (XEXACTR) (Table 571
p. 502). When it is cleared, the pause operation completed.

When paused (<XEpause> is set), the XOR engine channel suspends the current operation at the
earliest opportunity, and enters a pause state. Upon entering a pause state, the XOR engine channel
signals the software by clearing the <XEstatus> bit in the activation register and asserting the
paused interrupt.

operation, implies that the channel completed the current descriptor chain before the
pause operation and that the channel is in stop mode and not in paused mode. The

Note software must act accordingly and reactivate the channel according to Section ,
Re-Activation After Stop.

EI Receiving of an EOC interrupt before a paused interrupt, after initiation of a pause

Re-Activation After Pause

To re-activate the channel, the software must set the <XErestart> bit in the relevant XOR Engine
[0..1] Activation (XEXACTR) register (XEOACTR or XE1ACTR). When <XEstatus> field is set, the
XOR engine has resumed operation.

|:: | | After pausing a channel, it is not allowed stopping it. In order to stop it, software must
first perform re-activation after pause, and only after the channel becomes active again,
Note it can now stop it.

Stop Operation

The stop operation terminates processing of an XOR engine channel’s current operation. After stop,

the current operation cannot be resumed and a new operation must be loaded to the XOR engine

channel. The software can stop the XOR engine channel operation while active, by performing the
following:

1. Check that the relevant XOR engine channel is active (<XEstatus> field in the XOR Engine
[0..1] Activation (XEXACTR) (Table 571 p. 502)—XEOACTR or XELACTR—is set). If it is not
active, the stop operation is not necessary.

2. Set <XEstop> in the relevant XOR Engine [0..1] Activation (XEXACTR) register.

3. Check relevant <XEstatus> bit. When it is cleared, the stop operation is completed.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 198

Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
XOR Engine Programming

When stopped (<XEstop> is set), the XOR engine stops performing the operation at the earliest
opportunity and enters an inactive state. Upon entering an inactive state, the XOR engine closes the
current descriptor and signals the software by clearing the <XEstatus> bit in the activation register
and asserting the stopped interrupt. Inactive state is similar to Initial state of XOR engine on startup.

Re-Activation After Stop
Similar to activation on startup, see Section 16.5.1.1, Activation On Startup, on page 197.

The software must perform the following steps:

1. Confirm that the relevant XOR engine channel is inactive. The <XEstatus> field in the XOR
Engine [0..1] Activation (XEXACTR) (Table 571 p. 502) is set to O.

2. Initialize the relevant XOR engine channel through the XOR Engine [0..1] Configuration
(XEXCR) (Table 570 p. 500).

Prepare a descriptor (or chain of descriptors) in memory.
Update the XOR Engine [0..1] Next Descriptor Pointer (XExXNDPR) (Table 576 p. 504).
Set the <XEStart> field in the XOR Engine [0..1] Activation (XEXACTR) (Table 571 p. 501).

When the XOR engine activates the relevant channel (the <XEstatus> field in XEOACTR or
XE1ACTR is set), the activation sequence is complete.

o gk w

When activated (<XEstatus> is set), the XOR engine fetches the descriptor pointed by the XOR
Engine [0..1] Next Descriptor Pointer (XEXNDPR), and starts performing the operation on it. Upon
completion, it progresses to the next descriptor and continues until the end of the descriptor chain is
reached, the EOC - Next descriptor Address field of the current descriptor equals NULL. Upon
reaching the end of the chain, the XOR engine clears the <XEstatus> bit and enters inactive state.
This state is equal to the initial state of XOR engine on startup.

16.5.1.5 Reaching End of Descriptor Chain

Upon reaching the end of the descriptor chain, the XOR engine asserts an EOC (End Of Chain)
interrupt and enters an inactive state. It waits to be re-activated by the software (setting <XEstart>).

Upon receiving an EOC interrupt, two options must be examined by the software:
True EOC The XOR engine reaches the end of a descriptor chain.

False EOC The chain was updated and the XOR engine is not in the current EOC. This can
occur when software updates the descriptor chain while the XOR engine is
processing the former last descriptor in the chain. In this case, the XOR Engine [0..1]
Next Descriptor Pointer (XExXNDPR) has a NULL value. Although it did not reach a
true EOC, the XOR engine enters an inactive state.

To determine which option is valid, and to act accordingly, the software must check if the XOR
engine current descriptor is currently the last descriptor in the chain. For example, read the XOR
Engine [0..1] Current Descriptor Pointer (XEXCDPR) (Table 577 p. 505) and match it with the
software’s current descriptor parameter.

If it is true, EOC acts according to activation after stop.

If it is false EOC forces the XOR engine to re-read the current descriptor. That is done by writing to
the current descriptor pointer, that was read from XECDPR, to the Next descriptor Pointer Register
(XENDPR), and performing an activation after stop, set the <XEStart> field in the XOR Engine [0..1]
Activation (XEXACTR) (Table 571 p. 501).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 199

16.5.1.6

Activation

—

= 88F5182
MARVELL®

User Manual

Synchronizing Software and Hardware

Software

Initialize XOR Engine

v

Prepare descriptor chain
in memory

v

Chain
Update

End of
Chain
Handling

Write XENDPR
Next descriptor pointer

'

Set XEstart

'

Prepare new descriptor chain
in memory

v

Update NDA field of former last
descriptor in chain

Upon EOC interrupt or
Xeactive=0 without Xestop
operation

A

16.5.2

16.5.2.1

Check if True/False EOC
Get proper NDA

Hardware

Y

Wait for Xestart = 1

v

Initialize
Set XEactive

v

Fetch ND according to XENDPR

j Inactive

Active

'

Execute

'

Close Descriptor

Ye:

Was this the last
descriptor in
the chain?

Interrupt: EOC
Clear XEactive

Interrupt: EOD

Programming in ECC and MemInit Modes
ECC and MemiInit modes are programmed and controlled directly through internal registers (without

using descriptor chains).

Activation

To activate the XOR engine, the software must perform the following sequence.

1. Confirm that XOR engine relevant channel is inactive. The <XEstatus>bit is set to 0 in the XOR
Engine [0..1] Activation (XEXACTR) (Table 571 p. 501).

2. Initialize the relevant XOR engine channel configuration through the XOR Engine [0..1]

Configuration (XEXCR) register.

Doc. No. MV-S103345-01 Rev. C

Page 200

Document Classification: Proprietary Information

Copyright © 2008 Marvell

April 29, 2008, Preliminary

16.5.2.2

16.5.3

16.6

XOR Engine
Burst Limit

3. Program the relevant internal registers (XOR engine ECC/Memlinit Registers).
4. Set <XEStart> in the relevant XOR Engine [0..1] Activation (XEXACTR) register.

Stop Operation

The stop operation terminates a XOR engine channel’s processing of the current operation. After
stop, the current operation cannot be resumed. A new operation must be loaded to the XOR engine
channel.

To stop the XOR engine channel operation while active, performing the following:

1. Check that the relevant XOR engine channel is active. The <XEstatus> bit in the XOR Engine
[0..1] Activation (XEXACTR) must be set. If it is not active, the stop operation is not necessary.

2. Setthe <XEstop> bit in the relevant activation register.

3. Check the relevant <XEstatus> bit. When it is cleared, the stop operation is completed.

When stopped (<XEstop> is set), the XOR engine stops performing the operation at the earliest
opportunity and enters an inactive state. Upon entering inactive state, the XOR engine signals the
software by clearing the

<XEstatus> bit in the activation register and asserting the stopped interrupt. The inactive state is
similar to initial state of the XOR engine on startup.

Internal Registers Write Access Protection

When an XOR engine channel is active, all the registers that are related to that channel, the shared
address decoding registers, the shared channel arbitration registers and the shared memory
initialization initial value registers, are write access protected. Every write request to those internal
registers when the channel is active

(<XEstatus> of the relevant channel is set) is silently disregarded. The only channel related registers
that can be write accessed during the channel active period are the activation registers, the shared
interrupt cause and mask registers, and the debug register.

This design prevents configuration changes during channel operation. Changes during a channel’'s
operation can cause unpredictable results. The register access protection can be de-activated per
channel through the relevant configuration register's <RegAccProtect> field (XECRO or XECR1).

|§ | | If at least one of the channels enables register write access protection, write accesses
to internal registers shared by channels (e.g, address decoding, channel arbitration,
Note and memory initialization initial value registers) are disregarded.

Read requests for all internal registers are enabled at all times, regardless of the channel activation
status (except for WO - Write Only registers).

Burst Limit

The maximum burst sizes of different transaction types on the internal crossbar can be configured
through the XOR Engine [0..1] Configuration (XEXCR) (Table 570 p. 500).

m Data read (reading a source buffer) maximum burst size: 32B / 64B / 128B.

m Data write (writing to destination buffer) maximum burst size: 32B / 64B / 128B.

A descriptor read, fetching a descriptor, is always a 32B burst size. In XOR mode, almost all the 64

bytes of the descriptor are relevant and two 32B read requests are required. In CRC or ECC modes,
only the upper 32B of the descriptor are relevant and one 32B read request is sufficient.

Descriptor write, closing a descriptor, is always 8B burst size (Status and iISCSI CRC32C Result
words).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 201

—

= 88F5182

M ARVELL® UserManual

16.7

16.8

| ;I | If an XOR engine writes to a cache coherent DRAM region or accesses (read/write)

Not cache coherent SRAM, the burst limit must not exceed 32 bytes.
ote

Endianness

The XOR engine supports byte swapping on an 8 byte granularity — byte 0 swapped with byte 7,
byte 1 swapped with byte 6, and so on. This is useful for Big/Little Endian conversions.

To byte swap data being read from the source block, set the <DrdResSwp> field in the XOR Engine
[0..1] Configuration (XEXCR) (Table 570 p. 500). Byte swap of data being written to destination block
can be set via <DrdResSwp> bit the same register.

The 88F5182 internal registers are kept in the Little Endian convention. Also, the descriptors (that
are being loaded from memory into internal registers) are treated in Little Endian convention. During
descriptor fetch and descriptor close, the XOR engine must be configured to perform byte swap on
descriptors via the <DesSwp> bit in the Configuration Register (XEOCR or XE1CR).

Errors and Interrupts

The XOR engine interrupts are registered in the XOR Engine Interrupt Cause (XEICR)
(Table 572 p. 502). Upon an interrupt event, the corresponding cause bit is set to 1. It is cleared
upon a software write of 0.

The XOR Engine Interrupt Mask (XEIMR) (Table 573 p. 503) controls whether an interrupt event
causes an interrupt assertion. The setting of the mask register only affects the interrupt assertion.
This setting has no affect on the cause register bits setting.

The XOR engine interrupts can be divided to two groups:

m Error Interrupts: Descriptor ownership violation, address miss, multiple hit, window access
violation, write protect violation, or parity error.

m Operation Completion Interrupts: EOD (End of Descriptor), EOC (End of Chain), pause, or stop
by software.

A summary of each interrupts group is registered in the Main Interrupt Cause Register
(Table 99 p. 253).

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 202

Document Classification: Proprietary Information April 29, 2008, Preliminary

XOR Engine
Errors and Interrupts

Table 63 summarizes the interpretation of EOD and EOC interrupts for each operation mode.

Table 63: EOC/EOD Interpretation

Operation Mode

XOR, CRC, DMA

Meminit

ECC - Non-Timer mode

ECC - Timer mode

Operation Related Interrupt Description

The EOD interrupt is asserted upon closing each descriptor. If the
<EODIntEn> bit of the descriptor is cleared, EOD interrupt is not
asserted when it is closed.

The EOC interrupt is asserted upon reaching end of descriptor chain
or upon end of chain processing due to error condition.

The EOC interrupt is asserted upon completing the meminit operation.

The EOC interrupt is asserted after the entire destination block is
cleaned.

The EOD interrupt is asserted after every section cleanup completion.
The EOC interrupt is asserted after the entire destination block is
cleaned.

The following error interrupts are supported:
m Parity error: Internal data path parity error.
m Ownership error: Fetching descriptor that is owned by the CPU (software error).

m Address Miss Error: Accessing an address that is not in one of the address windows, or an
address that matches more than one address window.

m Access Protect Error: Accessing an access-protected address.
m Write Protect Error: Writing to a write protected address.

In all error conditions, the XOR engine halts, as if it is stopped by the software. Also, in all case of an
error address, the address is latched in the XOR Engine Error Address (XEEAR) (Table 575 p. 504).
Once an address is latched, no new addresses (due to additional errors) can be latched until the

current address being read.

Copyright © 2008 Marvell

Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 203

—

= 88F5182
M ARVELL® UserManual

17 General Purpose I/O Port Interface

The 88F5182 contains a 26-bit General Purpose Port I/0 (GPIO). The GPIO interface provides the
following features:
m Each of the GPIO pins can be assigned to act as a general purpose input or output pin.
m Adedicated register provides the GPIO input value.
m Each of the GPIO input pins can be programmed to generate an Edge sensitive or a Level
sensitive maskable interrupt.
A dedicated register provides the GPIO output value.
Each of the GPIO outputs can be programmed for the LED to blink every ~100 ms.

| ;] | The GPIO interface is multiplexed on the external pins as described in Section A.18.1,

MPP Registers, on page 515.
Note

For the 88F5182 GPIO registers, see Table 591, “GPIO Registers Map,” on page 512.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 204 Document Classification: Proprietary Information April 29, 2008, Preliminary

18

18.1

18.2

18.3

Interrupt Controller
Functional Description

Interrupt Controller

Functional Description

The 88F5182 includes an interrupt controller that routes internal interrupt requests as well as
external interrupt requests (GPIOs) to the Feroceon® CPU core.

The 88F5182 interrupt controller drives two interrupt signals to the Feroceon CPU core—FIQ (high
priority) and IRQ (regular priority). All interrupts are level sensitive. The interrupt is kept active as
long as there is at least one non-masked cause bit set in the Interrupt Cause register.

The 88F5182 can also be used as the interrupt controller for external devices generating interrupts
to the Feroceon CPU core via GPIO inputs. The interrupt controller can also receive interrupt
messages from an external PCI Express device.

The 88F5182 can also act as a PCI or PCI Express Endpoint. As such, it can generate the PCI
Express INTA emulation message or the INTAn signal.

Local Interrupt Cause and Mask Registers

The 88F5182 handles interrupts in two stages. The first stage is specific unit cause and mask
registers, that distinguish between a specific interrupt events within the unit.

Once an interrupt event occurs, its corresponding bit in the unit cause register is set to 1. If the
interrupt is not masked by the unit mask register, it is marked in the Main Interrupt Cause register.
The unit local mask register has no effect on the setting of interrupt bits in the unit local cause
register. It only affects the setting of the interrupt bit in the Main Interrupt Cause register

When working in level mode, the GPIO Data In register must be used. Do not use the GPIO Interrupt
Cause register.

The different units cause registers are:

AHB to Mbus Bridge Interrupt Cause register

PCI Express Interrupt Cause registers

PCI Interrupt Cause register

SATAHC Main Interrupt Cause register

GbE Port Interrupt Cause register

USBO0/1 Interrupt Cause register

Cryptographic Engine Security Accelerator Cause register
TWSI Interrupt Cause register

UARTO/1 Interrupt Cause registers

Device Interrupt Cause register

GPIO Interrupt Cause register

IDMA Interrupt Cause register

XOR Engine Interrupt Cause register

Main Interrupt Cause and Mask Registers

The second stage includes the Main Interrupt Cause register and Main Interrupt mask registers that
summarize the interrupts generated by each unit. The interrupt handler first reads the main cause
register, and then reads the specific unit cause register.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 205

—

= 88F5182

M ARVELL® UserManual

18.4

| ;I | The Main Interrupt Cause register bits are Read Only. To clear an interrupt cause, the

Not software needs to clear the active bhit(s) in the specific unit cause register.
ote

There are two mask registers corresponding to the two CPU interrupt lines—IRQ and FIQ. Setting
these registers allows the reporting of different interrupt events on the different interrupt lines. If a bit
in the mask register is set to 1, the corresponding interrupt event is enabled. The setting of the mask
bits has no effect on the value registered in the Main Interrupt Cause register, it only affects the
assertion of the interrupt pin. An interrupt is asserted if at least one of the non masked bits in the
cause register is set to 1.

When the 88F5182 functions as Endpoint, a third mask register corresponding to PCI Express/PCI
interrupt is used to generate an interrupt towards the host. The host is connected to 88F5182
through the interface defined by bit <EndPointIF> in the CPU Configuration Register

(Table 93 p. 250). The INTA interrupt or MSI is routed to host according to this bit value.

| §| | m See Table 71, CPU Register Map, on page 242.

Note m See Table 18.5, 88F5182 Interrupt Controller Scheme, on page 207.

Doorbell Interrupt

When 88F5182 functions as Endpoint, a doorbell mechanism is provided to communicate between
Feroceon CPU core and the external host.

The 88F5182 supports 32-bit doorbell interrupt register from host to Feroceon CPU core. See
Table 110, Host-to-CPU Doorbell Register, on page 258 and Table 111, Host-to-CPU Doorbell Mask
Register, on page 258.

The 88F5182 supports 32-bit doorbell interrupt register from Feroceon CPU core to host. See
Table 112, CPU-to-Host Doorbell Register, on page 259 and Table 113, CPU-to-Host Doorbell Mask
Register, on page 259.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 206

Document Classification: Proprietary Information April 29, 2008, Preliminary

Interrupt Controller

88F5182 Interrupt Controller Scheme

18.5 88F5182 Interrupt Controller Scheme

Figure 59: 88F5182 Interrupt Controller Scheme

UNIT O UNIT 1 UNIT N
Interrupt Cause Reg, Interrupt Cause Reg. Interrupt Cause Reg|
00O
Interrupt Mask Reg. Interrupt|Mask Reg. Interrupt Mask Reg.
N/ _/ _/
Main Interrupt Controller
Main Interrupt Cause Reg. 0oo
Main IRQ Interrupt Mask Reg. ooo
I p. > IRQ
N —>
Main FIQ Interrupt Mask Reg. 000
I p. FIQ
A >—>
Main PCI/PCI Express Interrupt 000
Mask Reg. | PEX
€ INTA —
‘I_>—> PCI
ZEndpointIF bit
masks routing to
PEX and PCI

Copyright © 2008 Marvell

April 29, 2008, Preliminary Document Classification: Proprietary Information

Doc. No. MV-S103345-01 Rev. C
Page 207

®
I;% 88F5182

M ARVELL® UserManual

19

19.1

19.2

19.3

Timers

Functional Description

The 88F5182 provides two general purpose timers and one watchdog timer.

32-bit-wide Timers

The 88F5182 provides two 32-bit-wide timers. Each timer decrements with every TCLK rising edge if
the corresponding enabled bit is enabled. Reads and write from/to the timer are done to the counter
itself.

The timers provide auto mode:

m When the timers are set to auto mode disabled and the timers reach to 0, the timers stop
counting.

m When the timers are set to auto mode enabled and the timers reach to 0, the timers preload and
continue counting.

Regardless of whether auto mode is enabled or disabled, when the timers reach 0, a maskable
interrupt is generated.

Watchdog Timer

The 88F5182 internal watchdog timer is a 32-bit count down counter that can be used to generate a
maskable interrupt or reset the system in the event of unpredictable software behavior.

After the watchdog is enabled, it is a free running counter that needs to be serviced periodically to
prevent its expiration. After reset, the watchdog is enabled or disabled according to sample at reset
pin value.

When the watchdog timer expires and bit <WDRstOutEn> is set to 1 in the RSTOUTn Mask Register
(Table 95 p. 252), the SYSRST_OUTn output signal is set.

See Section A.4.4, CPU Timers Registers, on page 256.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 208

Document Classification: Proprietary Information April 29, 2008, Preliminary

Internal Architecture
AHB—Feroceon® CPU Core Local Bus

20 Internal Architecture

20.1 AHB—Feroceon® CPU Core Local Bus

The 88F5182 Feroceon CPU core local bus is compatible with the AHB bus. See the AMBA
Specification, Rev 2.0.

This local bus provides the following features to reduce cache read latency:

m Direct connection to the DDR controller

m Synchronous interface to the DDR controller (The AHB bus runs at DDR clock.)

m Extension to 64 bits for cache reads

20.2 Mbus—Internal Bus

The Mbus is a 64-bit internal full-mesh bus used for data transfer between the different units, except
for the Feroceon CPU core access to DDR SDRAM. The different units can act as masters on the
bus generating requests or as targets driving read response. Table 64 shows the units connected
through the Mbus and the functions implemented in each unit. The Mbus runs at TCLK.

Table 64: Mbus Units

Unit Unit ID Function
DDR SDRAM controller 0x0 Target

Device bus, UART, and TWSI 0x1 Master/Target
AHB to Mbus bridge 0x2 Master/Target
PCI Express port (PEXO0) Ox4 Master/Target
PCI port 0x3 Master/Target
USB 2.0 port0 0x5 Master/Target
IDMA port and XOR port 0x6 Master/Target
Gigabit Ethernet port Ox7 Master/Target
SATA ports 0x8 Master/Target
Cryptographic engines and Security accelerator 0x9 Target

USB 2.0 portl OxA Master/Target

| ;| | The Device bus, UART, and TWSI interfaces behave as targets. When using TWSI

Not serial ROM initialization, the TWSI behaves as a master only after reset.
ote

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 209

—

= 88F5182
M ARVELL® UserManual

The Mbus uses a proprietary protocol. All read transactions are split transactions. This ensures that
the bus is not tied up while a slow memory unit is accessing the requested data. The bus supports
up to 128B transfer per a single transaction.

20.2.1 Mbus Arbitration

The DDR SDRAM interface Mbus port is using a programmable arbitration scheme to optimize the
88F5182 performance, according to the system requirements. The arbitration priorities for the
initiators can be adjusted through the registers in Section A.5, DDR SDRAM Controller Registers,
on page 260.

The DDR SDRAM controller further arbitrates between the winning Mbus transaction and AHB
requests from the Feroceon CPU core. For more details, see Section 4.1.2, Arbitration and
Ordering, on page 25.

Each of the rest of the Mbus target units also has a dedicated arbiter. Those arbiters
EI used a fixed arbitration scheme that cannot be programmed. A two-level arbitration
scheme is used for those arbiters. All read responses target units are serviced first,
Note followed by all initiator requests from master units. The arbitration between the initiator
units operates in a fixed round-robin fashion. The arbitration between target units also
operates in a fixed round-robin fashion.

Figure 60 shows the arbitration in the form of a wheel. Each slice of a wheel represents a transaction
on the Mbus. The arbitration scheme works as follows:
The arbiter gives access to the initiator unit that has priority in the current transaction slice.

If the initiator unit that has priority in the current slice has not reasserted a request, the arbiter
will give the transaction to the initiator unit that has priority in the next slice. This will continue
until an initiator unit is found that has asserted a request. This will occur in the same clock cycle.

Figure 60: Masters Request Default Arbitration Cycle

Arbitration Cycle

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 210 Document Classification: Proprietary Information April 29, 2008, Preliminary

20.3

20.4

Internal Architecture
AHB to Mbus Bridge

The Mbus SDRAM arbiter priority scheme can be used to allocate a fair bandwidth to the different
master units. The arbiter has 16 slices, each of which can be assigned to any unit. The arbiter works
in a round-robin fashion, calculating at each available cycle which of the pending requests is the
next to be served. The arbiter works on a transaction basis, meaning, it enters a new arbitration
cycle, only when a transaction ends. This means that priority settings are affected by the typical
transaction size for each unit. If for example, the typical transaction size of unit A is twice the typical
transaction size of unit B, unit B receives twice as many priority slices as unit A, so as to have the
same bandwidth allocation.

AHB to Mbus Bridge

The Feroceon CPU core interfaces with the 88F5182 units over the AHB to Mbus bridge. This bridge
forwards Feroceon CPU core transactions to the 88F5182 units over the Mbus, and forwards read
responses back from the units to the Feroceon CPU core. This bridge also contains the 88F5182
control and status registers related to the CPU.

The AHB to Mbus Bridge incorporates the following features:

m Unidirectional bridge—Only transactions from AHB to Mbus are supported.

m Asingle read transaction at a time: The AHB bus is available for the next transaction only when
data from the current transaction was returned on the AHB bus.

m A single write transaction at a time: The write transaction is completed when data is stored in
the bridge internal buffer. The AHB bus is then available for next transaction.

m Responds to write transaction only when its buffer is empty.

m Contains a 32B single read/write buffer.

The AHB to Mbus bridge contains the registers listed in following sections:
m Section A.4.1, CPU Address Map Registers, on page 243.

Section A.4.2, CPU Control and Status Registers, on page 250.
Section A.4.3, Main Interrupt Controller Registers, on page 253.
Section A.4.4, CPU Timers Registers, on page 256.

Section A.4.5, CPU Doorbell Registers, on page 258.

Transaction Ordering

The 88F5182 architecture obeys the rules of PCI Express transactions ordering. In addition,
transactions from the Feroceon CPU core to the DDR interface are snooped on the Mbus
transaction queue within the dual port DDR controller unit.

|§ | | When an interrupt is received from the PCI Express port, the Feroceon CPU core must
perform a read of the corresponding cause register, to ensure that all previous
Note transactions have been completed (Producer-Consumer model).

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 211

®

—

= 88F5182

M ARVELL® UserManual

21

21.1

2111

21.1.2

21.2

System Considerations

Endianness
The 88F5182 supports both Little Endian and Big Endian modes.
The Endian mode is set using bit [7] B in Register R1 in the CPU-CP15 registers.

The value of B bit is reflected by bit[15] <BigEndian> field in the CPU Control and Status Register
(Table 94 p. 251).

The initial value of B bit is set by bit <EndianlInit> of CPU Configuration Register (Table 93 p. 250).

The initial value of bit <EndianInit> of CPU Configuration Register (Table 93 p. 250) is defined by
boot strap.

Regardless of the endianness mode, the 88F5182 internal registers always operate in Little Endian
mode.

Little Endian Mode (Default)

When the 88F5182 is in Little Endian mode, bit [7] B in Register R1 within CPU-CP15 registers is
cleared to O (default). The 88F5182 transfers all transactions without any change.

Big Endian Mode

When the 88F5182 is in Big Endian mode, bit [7] B in Register R1 in the CPU-CP15 registers is set
to 1. The Feroceon® CPU core implements Big Endian mode in compliance with the ARM
Architecture Reference Manual, Second Edition. In addition, a 32b bytes swap is done on the
Feroceon CPU core local bus.

The swapping is done in both directions:

= Avalue of OXAABBCCDD-EEFFGGHH leaving the CPU is swapped to
0xDDCCBBAA_HHGGFFEE before arriving at the DDR controller and the MBUS bridge.

= Avalue of OXAABBCCDD-EEFFGGHH leaving the DDR controller and the MBUS bridge is
swapped to OXDDCCBBAA_HHGGFFEE before arriving at the CPU.

No further swapping is done in the rest of the device.

Boot Sequence

The 88F5182 supports the following boot sequences:
m Boot from Flash (Default)
m Boot from PCI Express/PCl interface

m Boot from DDR—The external PCI Express/PCIl master downloads the boot code into DDR
memory.

21.2.1 Boot from Flash/NAND Flash
When the Feroceon CPU core is booted from the Flash, the following steps are performed:
m The location of exception vectors and the first PC generated from the Feroceon CPU core is to
address
OxFFFF-0000, as configured in bit <VeclnitLoc> of the CPU Configuration Register
(Table 93 p. 250).
Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 212

Document Classification: Proprietary Information April 29, 2008, Preliminary

21.2.2

21.2.3

System Considerations
Boot Sequence

m The Feroceon CPU core starts to boot from the Flash boot device as configured in the Window7
Control Register (Table 90 p. 249) and the Window7 Base Register (Table 91 p. 249). See also
Section 2.10, Default Address Map, on page 22.

m Atthe end of the boot sequence, an MCR instruction is used to modify the location of exception
vectors to 0x0000—0000 (Mapped to DDR). See Section 2.10, Default Address Map,
on page 22.

Boot from PCI Express/PCI Interface
When the Feroceon CPU core is booted from the PCI Express/PCl interface, the following steps are
performed:
m Serial ROM initialization is enabled and used to configure the following registers:
* Bit <PCIDs> field in the CPU Control and Status Register (Table 94 p. 251) is cleared to 0, to
enable the PCI Express/PCl interface.
* Window7 Control Register (Table 90 p. 249) is disabled.
* WindowO Base Register (Table 73 p. 244) is configured to match address
F800.0000-FFFF.FFFF.
* WindowO Base Register is configured to the appropriate PCI Express/PCI interface.

* WindowO Remap Registers (Table 74 on page 244 and Table 75 on page 244) can be used
to remap the transaction to the appropriate location in the PCI Express/PClI interface.

|§ | | The Feroceon CPU core remains at reset until the Serial initialization sequence is
completed and until bit <CPUReset> field in the CPU Control and Status Register
Note (Table 94 p. 251) is cleared to 0.

m The location of exception vectors and the first PC generated from the Feroceon CPU core is to
address
0xFFFF-0000, as configured in bit <VeclnitLoc> of the CPU Configuration Register
(Table 93 p. 250).

m The Feroceon CPU core starts to boot from the PCI Express/PCl interface as configured in the
WindowO Control Register (Table 72 p. 243), the WindowO Base Register (Table 73 p. 244) and
the WindowO Remap Registers (Table 74 on page 244 and Table 75 on page 244).

m Atthe end of the boot sequence, an MCR instruction is used to modify the location of exception
vectors to 0x0000—0000 (Mapped to DDR). See Section 2.10, Default Address Map,
on page 22.

Boot from DDR

When the Feroceon CPU core is booted from the DDR interface, the external PCI Express/PCI
master downloads the boot code to the DDR memory.

The following steps are performed.

m Serial ROM initialization is enabled and used to configure the following registers/bits.

* <PCIDs> field in the CPU Control and Status Register (Table 94 p. 251) is cleared to 0, to
enable the PCI Express/PCl interface.

* Bit <VeclnitLoc> is cleared to 0 in the CPU Configuration Register.
* <CPUReset> field in the CPU Control and Status Register (Table 94 p. 251) is set to 1.

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 213

®
I;% 88F5182

M ARVELL® UserManual

m Any transaction from the PCI Express/PCl is rejected until the serial initialization
EI sequence is completed.

The Feroceon CPU core remains at reset until the serial initialization sequence is
completed and the <CPUReset> field in the CPU Control and Status Register
(Table 94 p. 251) clears to 0.

Note

External device writes the code to DDR.
External device clears the <CPUReset> field in the CPU Control and Status Register (Table 94
p. 251) to 0.

m The Feroceon CPU core starts booting from the DDR. The location of exception vectors and
first PC generated from the Feroceon CPU core is to address 0x0000—0000, as configured in bit
<VeclnitLoc> of the CPU Configuration Register.

m The Feroceon CPU core transaction is propagated to the DDR interface, as configured in the
Window2 Control Register (Table 80 p. 245) and the Window?2 Base Register (Table 81 p. 246).

' From each of the boot sequences listed above (Flash, PCI Express/PCl, DDR), the
user must not attempt to issue a transaction to the PCI Express or PCI ports, before the

Cau.tion <PCIDs> bit is cleared. Transactions to the PCI Express or PCI port internal registers
are allowed.
21.3 Power Management

The 88F5182includes various power management (PM) features that enable fine-tuning of the
device’s power consumption according to the desired usage scheme.

21.3.1 DDR Controller Power Management Features
DDR SDRAM Self Refresh mode is supported (see Section 4.9, DDR SDRAM Self Refresh Mode,
on page 34).

21.3.2 PCI/PCI-X Interface Power Management Features

PCI Power Management Capability is supported, including PM_PME support (see Section 6.11.1,
Power Management, on page 63).

21.3.3 PCI Express Interface Power Management Features
The following PCI Express Root Complex and Endpoint power management features are supported.

Root Complex features <« SW Power management: DO, D1, D2, D3 device states and LO,
L1 link states supported.
* ASPM LOs-Rx supported.
e Turn-off mechanism is not supported.

Endpoint features: ¢ SW Power management: DO, D1, D2, D3 device states and LO, L1 link
states supported.
* ASPM LOs-Rx supported.
e Turn-off mechanism supported.

21.3.4 SATA Interface Power Management Features

The unused SATA ports are shut down to save power by clearing the appropriate <PhyShutdown>
field in the Serial-ATA Interface Configuration Register (Table 379 p. 397).

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 214 Document Classification: Proprietary Information April 29, 2008, Preliminary

21.4

Error Handling

System Considerations
Error Handling

The 88F5182 provides error handling for the following types of errors:
m Feroceon CPU core address decoding errors
PCI Express errors

| |
m PCl/ errors
m USB errors

| ;] | As the DDR controller does not support ECC, no errors are generated by the DDR

Table 65 lists the CPU address decoding errors and describes how they are handled.

Table 65: CPU Address Decoding Error Handling

Error Handling

Accesses are completed according to the setting of bit

<AHBErrorProp> in Table 93: CPU Configuration Register.

0 = Error indications are not propagate to AHB bus.

The transactions are completed normally.
1 = Error indications are propagate to AHB bus.

Unpredictable behavior.

controller.
Note
21.4.1 CPU Address Decoding Errors
Error Type
Access to unmapped window
Write Access to write-protected
window
Other errors
21.4.2 PCI Express Errors

Table 66 lists the PCI Express errors and describes how they are handled.

Table 66: PCI Express Error Handling

Flow

PCI Express Master
Write

PCI Express Master
Read completion

PCI Express Slave
Write

PCI Express Slave
Read

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Error Type

Error indication from initiator unit.

1. Data Poisoning from
PCI Express interface.

2. Completion timeout.

3. Received completion with
unsuccessful completion
status.

Data Poisoning from PCI Express
interface.

Error indication from target unit.

Document Classification: Proprietary Information

Error Handling

Forward the transactions with data
poisoning indications to the PCI
Express interface.

Forward the transactions with error
indications to the initiator.t

Drop the data. Close the transactions
normally.

Forward the transactions with data
poisoning indications to the PCI
Express interface.

Doc. No. MV-S103345-01 Rev. C
Page 215

—

= 88F5182
M ARVELL® UserManual

Table 66: PCI Express Error Handling (Continued)

Flow Error Type Error Handling
Link Fail 1. Reset link state machine.

2. Generate maskable interrupt.
Hot reset received 3. Activate system reset if enabled.

(Endpoint mode)

PHY/Link/Transport Set maskable interrupt.
Unrecoverable error

PHY/Link/Transport
Recoverable error

Address Decoding Unpredictable behavior.
errors

1. The CPU is the initiator. The transaction is propagated on the AHB bus if bit <AHBErrorProp> in
Table 93: CPU Configuration Register is set to 1.

21.4.3 PCI Errors

Table 67 lists the PCI/PCI-X errors and describes how they are handled.

Table 67: PCI Error Handling

Flow Error Type Error Handling

PCI Master Error indication from initiator unit. = Forward the transactions with bad parity to the
Write PCl interface.

PCI Slave Bad parity detected on received Drop the data. Close the transactions normally.
Write data.

PCI Slave Error indication from target unit. Forward the transactions with bad parity to the
Read PCl interface.

21.4.4 USB Errors

Table 68 lists the USB errors and describes how they are handled.

Table 68: USB Error Handling

Flow Error Type Error Handling
Address Decoding = No hit or multiple hit on Transactions forwarded according to windowO.
errors address windows. Generate maskable interrupts.
USB Controller Handled by the USB controller core according to
errors USB 2.0 spec.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 216 Document Classification: Proprietary Information April 29, 2008, Preliminary

@

—
[=—]
—

MARVELL®

88F5182

Feroceon® Storage Networking SoC
Register Set

Marvell. Moving Forward Faster

—

= 88F5182
M ARVELL® UserManual

This page is intentionally left blank.

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell
Page 218 Document Classification: Proprietary Information April 29, 2008, Preliminary

List of Registers

List of Registers

Al REQiSTEr DESCIIPIION ittt e e e e e e e s et r e e e e e e aaans 240
F A = = To TSy (=T S 1Y/ o =L PP 240
A.3 Internal RegiSters AdAreSS Mapcoiiiiiiiiiiiiie et e e 241
A.4 AHB to MbUS Bridge REQISTEISuuuiiiiiiiiiiiiiiiiiice ettt e e 242
Table 72: WindowO0 Control Register
Offset: 0x20000
Table 73: WINAOWO BaSE REJISIETcoiiiiiiiiiiii s s e s 244
Offset: 0x20004
Table 74: WINdOW0 REMAP LOW REGISTENciueeieeiiiiiiee et e e ettt e e s stee e e e st e e e s aaaa e e e sstaeeessnsteeeeannssaeeenseeeesnsnneeenns 244
Offset: 0x20008
Table 75: WIindow0 Remap High REQISIETuviiiiiiiie ettt e e et e e s et e e e s s e e e enteeeessrnneeeans 244
Offset: 0x2000C
Table 76: WINAOWL CONIOI REGISIEci.iiiiees et seee et e et e e et e e s e e e s ss e et e e e sstaeeeeesteeeesanseaeeesteeeesansnnneenns 244
Offset: 0x20010
Table 77: WINAOWL BASE REQISIETcceiiiiiieeiiitiiee et ee e et e e st e e e et e e e s st e e e s sntae e e e esteeeeeaneeaessneseeeeannneeeeans 245
Offset: 0x20014
Table 78: WINAOW1 REMAP LOW REGISIENcciiiieieiiiiiee ettt ee e e st e e e s snete e e s entteeeeennneeeeenteeeeennnneeenns 245
Offset: 0x20018
Table 79: WIindowl Remap High REQISIETveiiiiiiiie ettt st e e e s nne e e et ee e e s neeeeeans 245
Offset: 0x2001C
Table 80: WINAOW2 CONIOI REGISIETciiiiiiiii ittt et e s e s 245
Offset: 0x20020
Table 81: WINAOW2 BASE REJISIETuiiiiiiiiiiie ittt et st e e st e et e s bn e sir e e s ene e e anes 246
Offset: 0x20024
Table 82: WINAOW3 CONIOI REGISIETciuiiiiiiiiiii ettt r e s r e sare e 246
Offset: 0x20030
Table 83: WINAOWS3 BASE REJISIETuiiiiiiiiiiieiiie ettt ettt et e et e ettt e e e sin e e s neeeanes 247
Offset: 0x20034
Table 84: WiNdow4 Control REGISIETc..oiiiiiiiiii e s 247
Offset: 0x20040
Table 85: WINAOWA4 BASE REJISIENcoiiiiiiiiiiii e s 247
Offset: 0x20044
Table 86: WINdow5 CoNntrol REGISIETiiiiiiiiiii e 248
Offset: 0x20050
Table 87: WINAOWS BASE REQISIETeieiiiiiieeiiiiiie et e e s ete e sttt e e s s e e e s e e e e s aaaeeesestaeeeeestaeeesaneeeessnsaeeeesnnseeeeans 248
Offset: 0x20054
Table 88: WINAOWE CONIOI REGISIETcc.iiiiie s iiieee ettt e e e e s e e e e e e e e s st e e e e sstaeeeeesteeeesanseaeeensteneeeansneneenns 248
Offset: 0x20060
Table 89: WINUOWE BASE REQISIETceeiiiiieeiiiiiie e ettt e e st e e sttt e e s st e e s e e e e ssaeeaessstaeeeeestaeeesaneeaessnnaeeessnnnneeeans 249
Offset: 0x20064
LI Lo (SISO R A T To [o Y @o g o] I {0 L] 1= SRS 249
Offset: 0x20070
Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 219

—

= 88F5182
M ARVELL® UserManual

Table 91:

Table 92:

Table 93:

Table 94:

Table 95:

Table 96:

Table 97:

Table 98:

Table 99:

Table 100:

Table 101:

Table 102:

Table 103:

Table 104:

Table 105:

Table 106:

Table 107:

Table 108:

Table 109:

Table 110:

Table 111:

Table 112:

Table 113:

WINAOWT7 BASE REGISIENeiiiiiiiiiiiciiit ettt ee e 249
Offset: 0x20074
88F5182 Internal Registers Base AAAress REJISIENooiuiiiiiiiiiiiiiiii it 250
Offset: 0x20080
CPU CoNnfiguration REGISTETciuiiiiiiiiiiieiiie sttt ettt st e e st e e sin e s b e e e saneeeaes 250
Offset: 0x20100
CPU Control and Status REQISIENccuciiiiiiiii i 251
Offset: 0x20104
RSTOUTN MaSK REGISTENooiiiiiiiii i e 252
Offset: 0x20108
System Soft RESEt REGISIENcoiiiiiiiiii s 252
Offset: 0x2010C
AHB to Mbus Bridge Interrupt CauSe REQISIENccicuiiieeiiiiieeeiiiee e eree e se e e e st e e e s taee e e s snnanaeennneeees 252
Offset: 0x20110
AHB to Mbus Bridge Interrupt Mask REGQISTETceeiiiuuiieeiiiiieeeiiiie e eieee e seee e s a e et ee e s raeeeeennneees 253
Offset: 0x20114
Main INtEIrTUPE CAUSE REGISTETeiiieiieiiiie ittt ettt sttt et e et e et e e e e anr e e s teeennns 253
Offset: 0x20200
Main IRQ INtErrupt MAsk REGISTENveiieeiiiie ettt e e e e e e e e e e nee e e s nnneeaeesnnneee s 255
Offset: 0x20204
Main FIQ INterrupt Mask REQISTETc.uuiiieiiiiiee e sttt et e e st e e s st e e e e ane e e e snee e e s nnneeaeennnneeees 255
Offset: 0x20208
Endpoint INterrupt Mask REQISTENueiiiiiieiiiee ettt e e e s e e e sree e e s sneeeeeannnneeas 256
Offset: 0x2020C
CPU Timers CONIOl REGISTENcccuiiiiiiiiitieiei ettt sttt sbe e ser e s sra e 256
Offset: 0x20300
CPU Timer0 RelOad REGISIENcccuuiiiiiiiiiieiiie ittt et st e b e 257
Offset: 0x20310
CPU TIMEI O REGISTEeiiiiiieitie ittt ettt e b bt st e et e e e sbe e e be e sb et e sab e e e nbeeenane 257
Offset: 0x20314
CPU Timerl Reload REQISIENccuiiiiiiiiii i 257
Offset: 0x20318
CPU TIMEI 1 REJISIEeiiiiiii ittt s e s b e e sab e s bae e enes 257
Offset: 0x2031C
CPU Watchdog Timer Reload REQISIEN..........cccciiiiiiiiiiiiiii s 258
Offset: 0x20320
CPU Watchdog Timer REJISLETcciiiiiiiiiiii i e b 258
Offset: 0x20324
HOSt-t0-CPU DOOIDEI REGISTETeeeieiieiie ettt e et e s e e e st e e e snte e e e s sneeeeesraeeesanneeeeannnnees 258
Offset: 0x20400
Host-t0-CPU D0OOIDEll MAsSK REGISTETcciiiieiiiieiiiiiie et e it e e e st e e stea e e st ee e e s sneae e e s snnaessneeeeeennneees 258
Offset: 0x20404
CPU-t0-HOSt DOOIDEI REGISIET ...ueeiiee ettt e e ee e e s s e e e e st aaeesnneeeannnaaaeennnnnaeennnnes 259
Offset: 0x20408
CPU-t0-Host DOOrbell Mask REGISTETccciiiiieieiiiieie et e st e e s e e e ee e e s ree e e e snneeeeenneee 259

Offset: 0x2040C

A.5 DDR SDRAM CoNtroller REQISTEIScccoiiiiiiiiiiiee et 260

Table 115: CS[0]N BASE AQUIrESS REGISTEciiiiiiiiiiiiee ettt e e ettt e e s seee e e st eeeesstaaeeessseaeeessseeeeesasseeessseeeesansseeeeanns 261
Offset: 0x01500

LI Lo (T G O80T = = =T o 1] (= SR 261
Offset: 0x01504

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 220

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 117: CS[1]n Base Address REQISIENccuueiiiiiiiiieiiiiiie et

Offset: 0x01508

Table 118: CS[1]N SIZ€ REGISIEN ..ceeiiiiiiieiitiiiee ettt

Offset: 0x0150C

Table 119: CS[2]n Base AdAress REQISIENcuueeiiiiiiiieiiiiiie et

Offset: 0x01510

Table 120: CS[2]N SIZ€ REGISIEN ...ociiiiiiieietiiiee ettt

Offset: 0x01514

Table 121: CS[3]n Base Address REQISIEN.........uuiiiiiiiiiieiiiiiie e

Offset: 0x01518

Table 122: CS[3]n Size REQISLENcoiiiiiiiiiiiie i

Offset: 0x0151C

Table 123: DDR SDRAM Configuration ReQIStEruvveiiiuvieeeeiiiieeeiieeeeessiieee e

Offset: 0x01400

Table 124: DDR SDRAM CoNtrol REQISIENcoivveieeiiiiiee e e et eesieeee e siaeee e

Offset: 0x01404

Table 125: DDR SDRAM Timing (LOW) REQIStErccciveieeiiiiieeeeiiiie e eieee e ssieee e

Offset: 0x01408

Table 126: DDR SDRAM Timing (High) RegIiSter.........cccevviiiiiieiiiiee e

Offset: 0x0140C

Table 127: DDR2 SDRAM Timing (LOW) REQIStEN.........evveiiciiie e

Offset: 0x01428

Table 128: DDR2 SDRAM Timing (High) Register..........ccouiiviiiiiiiieiiiiiee e

Offset: 0x0147C

Table 129: DDR SDRAM Address Control Register..........ccccuvvieviiiiiiiiniicniiecine

Offset: 0x01410

Table 130: DDR SDRAM Open Pages Control Register...........ccocvevvvieiiiiiiiiininnens

Offset: 0x01414

Table 131: DDR SDRAM Operation REJISter.........cccooiviiiiiiiiiieiiie e

Offset: 0x01418

Table 132: DDR SDRAM Operation Control Register............cccooviiviiiiiiniiiciiins

Offset: 0x0142C

Table 133: DDR SDRAM Mode REQISLErccceiiiiiiiiiiiiie e

Offset: 0x0141C

Table 134: Extended DDR SDRAM Mode RegiStercccoviiiiiiiiiiiiiiiciiie e

Offset: 0x01420

Table 135: DDR SDRAM Initialization Control RegiSter.............cooeviiiiiiiiiiniiees

Offset: 0x01480

Table 136: DDR SDRAM Address/Control Pads Calibration Register

Offset: 0x014CO

Table 137: DDR SDRAM Data Pads Calibration RegiStercccccvvvvveeeiiiiereennns

Offset: 0x014C4

Table 138: DDR2 SDRAM ODT Control (LOW) REQISterceevviirreeiiiiieeeiiieeeanns

Offset: 0x01494

Table 139: DDR2 SDRAM ODT Control (High) Registerccccoocvvveeiviiieeeiiieeene

Offset: 0x01498

Table 140: DDR2 SDRAM ODT Control REQIStercevveiiiiieeiiiiiiee e

Offset: 0x0149C

Table 141: DDR SDRAM Interface Mbus Control (Low) Register..........ccccevvvveeenne

Offset: 0x01430

Table 142: DDR SDRAM Interface Mbus Control (High) Registerc.ccoceevvine

Offset: 0x01434

Copyright © 2008 Marvell

April 29, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S103345-01 Rev. C
Page 221

—

= 88F5182
M ARVELL® UserManual

Table 143: DDR SDRAM Interface Mbus TiMeOUt REQISIET.........uuiiiiiiiiiiiiiiiie e 276
Offset: 0x01438

Table 144: DDR SDRAM MMaSK REGISIENuiiiiiiiiiiiiiie ittt s e e 276
Offset: 0x014B0

A.6 PClEXPress Interface REQISIEIS ...uuuiiii i e e 277

Table 146: PCIl EXpress BARL CONIOI REQISIETcciiiiiiiieiiiiiee ettt ee e e e e a e e snsteee e s nntaeeenteeeesenneeeeans 279
Offset: 0x41804

Table 147: PCIl EXpress BAR2 CONIOI REGISIETcciiiiiiieiiiiiee et et ee e e e et a e e sntteee e s nntaeeenteeeeesnneeeeans 279
Offset: 0x41808

Table 148: PCI Express Expansion ROM BAR CoONtrol REGISLENcuuiiiiiiiiiieiiiiiie ettt 279
Offset: 0x4180C

Table 149: PCI Express Configuration AAdreSs REGISIET..........coiiiiiiiiiiiiiii ittt 280
Offset: 0x418F8

Table 150: PCI Express Configuration Data REJISTENcociiiiiiiiiiiiiiiie it 280
Offset: 0x418FC

Table 151: PCl EXPress INTEITUPt CAUSEcccuii ittt bbb e sn e e s ba e 280
Offset: 0x41900

Table 152: PCI EXPress INterrupt Mask...........ccoi i e 283
Offset: 0x41910

Table 153: PCIl Express Window0 Control REQISIETcciiiiiiiiiiiii i 283
Offset: 0x41820

Table 154: PCIl Express WindowW0 BasSe REQISIENuuiiiiuiiie e e citeee s siitee e e steeeeeesiaaeeessnteeeessnnaeeeesnseeeessnsseeesanns 284
Offset: 0x41824

Table 155: PCIl Express Window0 RemMap REGISTENcciiiuiiiiiiiiiiee it e et e e s st e e e enaae e e e srtaaeeesnnaeeeanneeessseneeenns 284
Offset: 0x4182C

Table 156: PCIl Express Window1 Control REQISTENcciiiiuiiiiiiiiiieeeiieiee e esiiee e s siee e e asnnee e e e sntaaeeessnseeeeanseeeesnnseneeenns 285
Offset: 0x41830

Table 157: PCIl EXpress WiNndOWL1 BasSe REQISIENueiiiiiiiieeiiiieee s eiieee s eieee e et ee e e e steee e e s enteeeeesnnaeeeessneeeesanneeeeeanns 285
Offset: 0x41834

Table 158: PCIl Express Window1l RemMaP REGISTENcciiiiiiiiiiiiiiieeeiiiiee et e s s e e enee e e e sneaeee e snteee e anneeesseeeeeeans 285
Offset: 0x4183C

Table 159: PCIl Express Window2 Control REQISTENc.ciiuiireiiiiiieeeiiieee e eiiee e et e e e ee e sneee e e sneae e e anseeeesseeeeeenns 286
Offset: 0x41840

Table 160: PCIl Express WIiNndoW2 Base REJISIENcoiuiiiiiiiiiiiiiii ettt 286
Offset: 0x41844

Table 161: PCIl Express Window2 RemMap REGISIENcuuiiiiiiiiiiiiiii sttt 286
Offset: 0x4184C

Table 162: PCl Express Window3 Control REQISIETuiiiuiiiiiiiiiiieiii ettt 287
Offset: 0x41850

Table 163: PCl Express WIiNndow3 Base REJISIENcoiuiiiiiiiiiii ittt ettt 287
Offset: 0x41854

Table 164: PCIl Express Window3 Remap REQISIETccoiiuiiiiiiiiiii i 287
Offset: 0x4185C

Table 165: PCIl Express Window4 Control REQISIETc.cciiiiiiiiiiiii i s 288
Offset: 0x41860

Table 166: PCIl Express Window4 Base REJISIENcciiiiiiiiiiiiii i 288
Offset: 0x41864

Table 167: PCIl Express Window4 REmMap REGISTENcciiiiuiireiiiiiie e it e eiiee e s st e e e etaee e e e sstaeeeesnsaeesanneeeesseneeenns 288
Offset: 0x4186C

Table 168: PCIl Express Window5 CoNtrol REQISTENc.iiiuiirieiiiiiee it e esieee e s siee e e eseteeaeesniaaeeessnseeeeanteeeesnnseneeenns 289

Offset: 0x41880

Doc. No. MV-S103345-01 Rev. C
Page 222 Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Table 169: PCIl Express Window5 Base ReQISterccccccvviviiiiiiiiiieiiiiieee s

Offset: 0x41884

Table 170: PCIl Express Window5 Remap RegiSter..........ccccovvviiviiiiiiiiniicniie e

Offset: 0x4188C

Table 171: PCI Express Default Window Control RegiSterccccvvvviiirivienninene

Offset: 0x418B0

Table 172: PCI Express Expansion ROM Window Control Register............c..cc......

Offset: 0x418CO0

Table 173: PCI Express Expansion ROM Window Remap Register............c...cce..e.

Offset: 0x418C4

Table 174: PCIl Express Control Register..........cccocoiiiiiiiiiiiiiiiiiccie e

Offset: 0x41A00

Table 175: PCl EXPress Status REQISIErucviieiee et

Offset: 0x41A04

Table 176: PCI Express Completion Timeout REQIStErc.uveeviiivreriiiieeeesiiiiee s

Offset: 0x41A10

Table 177: PCI Express Flow Control REgISter...........cccvveiiiiiiieeiiiieeesiee e

Offset: 0x41A20

Table 178: PCI Express Acknowledge Timers (1X) RegISter.......ccccvvevivveeeeiiieneennns

Offset: 0x41A40

Table 179: PCI Express Debug Control RegQISter..........evveiviviieeiiiiiee e

Offset: 0x41A60

Table 180: PCI Express TL Control REGISIENeveeviiieeeiiiiee e

Offset: 0x41ABO

Table 181: PCI Express Device and Vendor ID RegiSter..........cccccvevviriniiinivieniinene

Offset: 0x40000

Table 182: PCI Express Command and Status Registerccccoovveviiiiiiiniiniens

Offset: 0x40004

Table 183: PCI Express Class Code and Revision ID Registerccccecvvineeene

Offset: 0x40008

Table 184: PCI Express BIST, Header Type and Cache Line Size Register
Offset: 0x4000C

Table 185: PCI Express BARO Internal Register..........cccocvviviiiiiiiiiiiiiiee e

Offset: 0x40010

Table 186: PCI Express BARO Internal (High) Register..........ccccocoiiviiiiiiiiiiccnne

Offset: 0x40014

Table 187: PCIl Express BARL ReQISIErccciiiiiiiiiiiiiic e

Offset: 0x40018

Table 188: PCI Express BARL (High) RegISter........ccoovvviiiiiiiee e

Offset: 0x4001C

Table 189: PCIl EXpress BAR2 REQISIENuueeiiiiieeiiiieeeeeiiie e e esiiee e seeee e s naeeeee e

Offset: 0x40020

Table 190: PCI Express BAR2 (High) RegISter........ccoociiviiiiiiiie e eeiee e seeee

Offset: 0x40024

Table 191: PCI Express Subsystem Device and Vendor ID..........ccccooeveeeeinciveennnnns

Offset: 0x4002C

Table 192: PCI Express Expansion ROM BAR REQISIEr..........ccovvereeiiiireeiiiiieenanns

Offset: 0x40030

Table 193: PCI Express Capability List Pointer Registercocccvvevviieeeeiiiiieeennns

Offset: 0x40034

Table 194: PCI Express Interrupt Pin and Line Register...........ccocvviiiiiiiieiniines

Offset: 0x4003C

Copyright © 2008 Marvell

April 29, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S103345-01 Rev. C
Page 223

—

= 88F5182
M ARVELL® UserManual

Table 195: PCI Express Power Management Capability Header RegiStercccovviiiiiiiiiiiiiiiic e 302
Offset: 0x40040

Table 196: PCI Express Power Management Control and Status RegISIErcccvvieiiiiiiiieiiecieeee e 303
Offset: 0x40044

Table 197: PCI Express MSI| Message Control REJISTET..........cciiuiiiiiiiiiie ettt 304
Offset: 0x40050

Table 198: PCIl Express MSI Message Address REGISIENccciiiiiiiiiiiiii e 304
Offset: 0x40054

Table 199: PCI Express MSI Message Address (High) REQISIENcccccoiiiiiiiiiiiiiii e 305
Offset: 0x40058

Table 200: PCIl Express MSI Message Data REQISIEN............cooiiiiiiiiiiiiiii e 305
Offset: 0x4005C

Table 201: PCIl EXpress Capability REQISTETuuiii e eeciee et e sttt e see e s e e e s st e e e e ssteeeessnsaaessnnaeeessnnneeeeans 305
Offset: 0x40060

Table 202: PCIl Express Device CapabilitieS REQISIEN........ccuuiieiiiiiie e e e ee e e e e e sneee e e sreeeeessnreeeeenas 306
Offset: 0x40064

Table 203: PCI Express Device Control StatUS REGISIENuuiiiieiiiee e ciiee s eiee e e e e saaee e ereae e e s snee e s s reeeeeans 307
Offset: 0x40068

Table 204: PCIl Express Link CapabilitiesS REGISIEIcuiii it ee e e e seae e e e sneeeeeanns 309
Offset: 0x4006C

Table 205: PCI Express Link CONtrol Status REGISTETcoiuuiieiiiiiiiee e e e see et e e e st ee e e sraeee e e sneeeeeans 310
Offset: 0x40070

Table 206: PCI Express Advanced Error Report Header REQISIEr..........ouiiiiiiiieiiiiiie e 312
Offset: 0x40100

Table 207: PCI Express Uncorrectable Error Status REQISIEr..........coiiiiiiiiiiiiiiciic e 312
Offset: 0x40104

Table 208: PCI Express Uncorrectable Error Mask REQISLEcccuiiiiiiiiiiiiiiic it 313
Offset: 0x40108

Table 209: PCI Express Uncorrectable Error Severity REGISIEroooiiiiiiiiiiiiiiii s 313
Offset: 0x4010C

Table 210: PCI Express Correctable Error Status REQISIENcociiiiiiiiiiiiiiii i 314
Offset: 0x40110

Table 211: PCI Express Correctable Error Mask REQISIErccooiiiiiiiiiiiii i 314
Offset: 0x40114

Table 212: PCI Express Advanced Error Capability and Control Register.............cccoociiiiiiiiiiii e 315
Offset: 0x40118

Table 213: PCI Express Header Log First DWORD REQISIEYcccuiiiiiiiiiiiiiiii i 315
Offset: 0x4011C

Table 214: PCI Express Header Log SecoOnNd DWORD REQISIETcoiuvuiiiiiiiiieeeiiiiee e eciiee e s sieee e e snaeeeeesnnneeessnneeeennns 316
Offset: 0x40120

Table 215: PCI Express Header Log Third DWORD REQISIENcueiiiiiiieeiiiiieeeesiieeeesiieeeeesiiaeeessnnneeeesnnsneesssneeeeenns 316
Offset: 0x40124

Table 216: PCI Express Header Log FOurth DWORD REQISTENcoiiiuiiieiiiiieeeeiiiee e e siee e e sseeeeessneeeeeesnnaeeesseeeannns 316
Offset: 0x40128

Y A e O W | =T =TT =T o TS (=P 317

Table 218: CSN[0] BAR SIZE ...ttt ettt e ettt e e et e e e e b et e e e b et e e e e bt ee e e bb et e e s et re e e s e e e e e 320
Offset: 0x30C08

LI Lo (I e OR s o ST A = 0 . SRR 320
Offset: 0x30D08

LI Lo SR R ORs o 2 I ST A = 0 . SR 320

Offset: 0x30C0C

Doc. No. MV-S103345-01 Rev. C
Page 224 Document Classification: Proprietary Information

Copyright © 2008 Marvell
April 29, 2008, Preliminary

Table 221:

Table 222:

Table 223:

Table 224:

Table 225:

Table 226:

Table 227:

Table 228:

Table 229:

Table 230:

Table 231:

Table 232:

Table 233:

Table 234:

Table 235:

Table 236:

Table 237:

Table 238:

Table 239:

Table 240:

Table 241:

Table 242:

Table 243:

Table 244

Table 245:

Table 246:

CSN[B] BAR SIZ€ ..o

Offset: 0x30D0OC

DEVCSN[0] BAR SiZ€........vooiveeeeeeeeeeieeeeeseeeeeeeeeee e

Offset: 0x30C10

DEVCSN[L] BAR SiZ€.......oveiveeeeeeeeeereeeeeeeeeeeeese e

Offset: 0x30D10

DeVCSN[2] BAR SiIZ€.......ccociiiiiiiiiii i

Offset: 0x30D18

BOOt CSN BAR SIZE.....ooeeieeiecee e

Offset: 0x30D14

P2P MemMO BAR SiZE ...

Offset: 0x30D1C

P2P /O BAR SIZE.....oiieiii i

Offset: 0x30D24

EXpansion ROM BAR SiZEccoiiuiieiiiiiiee i siee e seee e s neaee e

Offset: 0x30D2C

Base Address Registers ENable..........ccccvveiiiiiieiiiiiee e

Offset: 0x30C3C

CSn[0] Base ADAress REMAP........c.uuveviiieieeiiiiieeeeiee e eiee e e e

Offset: 0x30C48

CSn[1] Base ADAress REMAP........c.uuveeviiiieeeiiiiee e e eiiie e e e e

Offset: 0x30D48

CSn[2] Base ADAress REMAP........c.uuveriiieieeeiiiieeeeiiee e siiee e e

Offset: 0x30C4C

CSn[3] Base Address REMAP.........ccceiiieriiiiiiiieiiie e

Offset: 0x30D4C

DevCSn[0] Base AdAress REMAPcccoviervieeiiieiiie e

Offset: 0x30C50

DevCSn[1] Base AdAress REMAPccccocvverivieiiiieiiie e

Offset: 0x30D50

DevCSn[2] Base Address REMAPcccveeiiieiiiiiiiiii e

Offset: 0x30D58

BootCSn Base Address Remapcccovvieiiiiiiiiiiiiin e

Offset: 0x30D54

P2P MemO Base Address Remap (LOW).......ccccccceiiiiiiiiiiiiincincsiees

Offset: 0x30D5C

P2P MemO Base Address Remap (High)cccoviiiiiiiiiiiini

Offset: 0x30D60

P2P 1/0 Base AddresSs REMAPcceeiiruirrieiiiireeeiiireeseneneeessnneeeeesnnnneens

Offset: 0x30D6C

Expansion ROM Base Address Remapcccvvevvvveieeniieeeessnieee e e

Offset: 0x30F38

DRAM BAR Bank SeIECtcccuuiiiiiiiiiieee et

Offset: 0x30C1C

PCI Address Decode Controleeeeeiieeeeiiiiiiiiiiieieeee e

Offset: 0x30D3C

PCIDLL CONIOl ...

Offset: 0x31D20

PCI/MPP Pads Calibrationcccceevviieeiiiiiiiiieeeeee e

Offset: 0x31D1C

PClCOMMANGccoiiiiiieeeeeeec ettt e e e e e e e e e e e e e e eeseeaaees

Offset: 0x30C00

Copyright © 2008 Marvell

April 29, 2008, Preliminary

Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S103345-01 Rev. C
Page 225

—

= 88F5182
M ARVELL® UserManual

Table 247:

Table 248:

Table 249:

Table 250:

Table 251:

Table 252:

Table 253:

Table 254

Table 255:

Table 256:

Table 257:

Table 258:

Table 259:

Table 260:

Table 261:

Table 262:

Table 263:

Table 264:

Table 265:

Table 266:

Table 267:

Table 268:

Table 269:

Table 270:

Table 271:

Table 272:

O 111V Lo To L= PSSP 331
Offset: 0x30D00
O 111V Lo To L= PSSP 332
Offset: 0x30D00
O I = L 1 PSSP 332
Offset: 0x30C04
e TR DT Tor= T o [I 1= GO TP ST P PP PP P PPPPP PP 333
Offset: 0x30D04
ST oo =T o T4 1= TP 333
Offset: 0x30C38
e O I g T (=T g O] |1 (o] E T TP PP PP PP PPPTPPP 333
Offset: 0x31D00
L O I e = O o110 U] = L[] o PR 334
Offset: 0x31D14
PCIl ACCeSS CONIOl BASE 0 (LOW) ..veiieeiieeeiiiiieeeiieieeessiieeeessesteaessssteaeessteeeeesssseeeessnsseaesannensesannseeeesnseees 334
Offset: 0x31E00
PCl Access Control Base O (High) ..eccceueieeiiiieeeceiee sttt e e eee e e e e s st e e e e nnte e e s nnnneeeennnneee s 335
Offset: 0x31E04
PCI ACCESS CONMIOI SIZE 0 ...t s 336
Offset: 0x31E08
PCl ACCESS CONIOI BASE 1 (LOW) .eveeiiiiiieeiiiiiie e et e esstiee e e s st e e s et e e s st e e e s snte e e e s annneaeeenaeeesnnneeaeeannneeens 336
Offset: 0x31E10
PCl Access Control Base 1 (High) .oeeoceeiieoiiiie ettt e e e e e e et e e s e e e nnnneee s 337
Offset: 0x31E14
PCIACCESS CONMIOI SIZE 1 ... 337
Offset: 0x31E18
PCI Access CoNtrol Base 2 (LOW)oiiiiiiiiiiiiiis i s 337
Offset: 0x31E20
PCI Access Control Base 2 (HIgh)oooiiiiiiiiiicii e 337
Offset: 0x31E24
PClACCESS CONIOI SIZE 2 ...ttt e et e et e e ekt e e et e s s e e e e ene e s 337
Offset: 0x31E28
PCI Access Control BaSe 3 (LOW)c..eiiiiiiiiiii it s s e 338
Offset: 0x31E30
PCI Access Control Base 3 (High)oooiiiiiiiiii s 338
Offset: 0x31E34
PCIACCESS CONIOI SIZE 3 ...ttt et e et e e ek et e e et et e s e e e e e ene s 338
Offset: Ox31E38
PCl ACCESS CONIOI BASE 4 (LOW) .evieieviiieeiiiiieeeiiiieeessiteeeessasteaesssteeeessseeeessassneeessnnseaeeannensesannseeessnseees 338
Offset: 0x31E40
PCIl Access Control Base 4 (High)cceeeieeiiiieeeceiee sttt e e st e e e st e e e e snte e e s nnnneeeennnneees 338
Offset: 0x31E44
PCIACCESS CONLIOI SIZE 4 ...ttt ettt ettt e e bt e e e b et et bt e et e e nnr e e e teeenees 339
Offset: 0x31E48
PCl ACCESS CONLIOI BASE 5 (LOW) .eveeiiiiiieeiiiiiie e et e e sttt e st e s et e e s s e e e s smae e e e s st e e e enae e e s nnneeeeennnneeees 339
Offset: 0x31E50
PCl Access Control Base 5 (High) .oecoueeiieeiiiie sttt e e et e e s ee e nnnneee s 339
Offset: 0x31E54
PCIACCESS CONLIOI SIZE D ...ttt et et eb e e e st et 339
Offset: 0x31E58
PCI Configuration AQArESSciiiiiiiiiieiiie et ba e re e 340

Offset: 0x30C78

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 226

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 273:

Table 274:

Table 275:

Table 276:

Table 277:

Table 278:

Table 279:

Table 280:

Table 281:

Table 282:

Table 283:

Table 284

Table 285:

Table 286:

Table 287:

Table 288:

Table 289:

Table 290:

Table 291:

Table 292:

Table 293:

Table 294:

Table 295:

Table 296:

Table 297:

Table 298:

List of Registers

PCI COoNfIQUIALION DALvviiiiieiiiiii ittt e e st ba e s ae e 340
Offset: 0x30C7C

PCIINterrupt ACKNOWIEUGEoiiiiiiiiiie it 340
Offset: 0x30C34

PCISERRN MASK ... ttiiiitie ittt ettt ettt st ekt e ettt e et e e s see e e te e e be e e eabeeebeeesreeasbeeanbeeeanteesnteeeneeas 341
Offset: 0x30C28

PClINTEITUPE CAUSEeeiiiiiiiiii it a e 342
Offset: 0x31D58

PCIINEITUPE MBSK......oiiiiiiiii i s s 343
Offset: 0x31D5C

PCIEIOr AQAreSS (LOW) ...uviiiiiie it s e bbb s 343
Offset: 0x31D40

O I = g (0T 2 [0 | XIS (1o | o) SR 343
Offset: 0x31D44

PCIEITOr COMMEIN ...ttt ettt ettt e e bb e s e bt e e bt e s ae e e eh e e e be e e aab e e e b e et b e e ebb e e embeeennneenneeas 344
Offset: 0x31D50

PCI DEVICE ANG VENUOK ID ..ottt ettt be et e e bt e e s eb e e ab e e e e e e nnn e e s teeenens 344
Offset: 0x00

PCI Status and COMMEIN..........eiiiiiiiiieiiie ettt et et e s b e e e sse e e st e e e e e nie e e nte e e s 344
Offset: 0x04

PCI Class Code and REVISION ID......c.uuiiiiiieiiieiiiteaiiee ettt neee s 346
Offset: 0x08

PCI BIST, Header Type/Initial Value, Latency Timer, and Cache Linecccccevviiieeiniie e, 346
Offset: 0x0C

PCI CSN[0] Base AQUIESS (LOW)ceiiuiiiiiiiieiitie ettt sttt s 347
Offset: 0x10

PCI CSn[0] Base AdAress (HIiGN)ccuiiiiiiiiiiciiie it 347
Offset: 0x14

PCI CSN[1] Bas@ AQUIESS (LOW)eiiiiiiiiiiieiiiie ittt sttt 347
Offset: 0x18

PCI CSn[1] Base AdAress (High) ..o s 348
Offset: 0x1C

PCI Internal Registers Memory Mapped Base ADdress (LOW)cccceeiiiiiiiin e 348
Offset: 0x20

PCI Internal Registers Memory Mapped Base Address (High)cccooiiiiiiiiii e, 348
Offset: 0x24

PCI Subsystem Device and VEeNdor ID.............cociiiiiiiiiin s 348
Offset: 0x2C

PCI Expansion ROM Base AdAreSS REQISTEN.........uuiieiiiieeeeiiiiie e et e e s sitee e s st ee e s nnaee e e snneaaeessneeeeannneees 349
Offset: 0x30

PCI Capability List POINTEN REGISIETuiieeiiiiie e sttt e e eee e e s stee e e e st e e e e stee e e s nnnneeeennnneees 349
Offset: 0x34

Ll O I a1 (=T U] o] =T T= g o I N = PSS 349
Offset: 0x3C

PCI POWET MBNAGEIMENT ...ttt ettt e e e e e e e ettt e et e e e e e s e s s bbbt e e ettt e e e e e eaanbbnnrereeeeeeeeeaannnas 349
Offset: 0x40

PCI Power Management CoNtrol and STALUS..........ceveiiiiirieiiiiiie e e e e e see e e e nnnaeee s 350
Offset: 0x44

PCIVPD AQUIMESS ...ttt ettt et et s et e et e e bt e s bt e e eb e e e er e e na bt e e e e e nbr e e e teeente s 351
Offset: 0x48

O Y= I - - PRSPPI 351

Offset: 0x4C

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 227

—

= 88F5182
M ARVELL® UserManual

Table 299:

Table 300:

Table 301:

Table 302:

Table 303:

Table 304:

Table 305:

Table 306:

Table 307:

Table 308:

Table 309:

Table 310:

Table 311:

Table 312:

Table 313:

Table 314:

Table 315:

Table 316:

Table 317:

Table 318:

Table 319:

PCIMSI MeSSage CONIOl........coiviiiiiiiiiiii e 352
Offset: 0x50
PCIMSI MESSAJE AQUIESSc..viiiiiieiiiie ittt bbbt e s s e sb e st e e bne e sene s 352
Offset: 0x54
PCI MSI MeSssage UPPEr AQAIESS........cooiiiiiiiiirie ittt s 352
Offset: 0x58
PCIMESSAQE DALAoouviiiiiiiiiie s 353
Offset: 0x5C
COoMPACIPCI HOTSWAP ...t 353
Offset: 0x68
PCI CSN[2] Base AAUIESS (LOW)ccouiiiiiiiiiie ittt s e 354
Offset: 0x10
PCI CSn[2] Base AAAress (High)ocueirioiiiiiie st e st e s s e e st e e e s e e e s nne e e s anneeeeennneees 354
Offset: 0x14
PCIl CSN[3] BASE AUUIESS (LOW) ...eeeeiiuiiiieeetiiteesitieeesssieeeesssteeeeasnaeaaessssaeeessnsseeeeaanseeeeesnseeesannseeeesnneees 354
Offset: 0x18
PCI CSn[3] Base AAAress (High)ocoueirieiiiiiie et ie et e s e e e st ee e e s e e e s nne e e s anneeeeannneees 354
Offset: 0x1C
PCl DeVCS[0] BASE AGUIESS (LOW) ...eiueeereeieiiieeiiiieeeesiieeeesaieeeeessnteeeessneaeeessnnteeeesasneeeesanseesannneeesanneees 354
Offset: 0x10
PCI DevCSn[0] Base AdAress (HIgN)coiiiiiiieiiiiiee et e e s e e e s ee e e nnneee s 355
Offset: 0x14
PCIl DevCSN[1] BASE AQAIESS (LOW)ueeiiiiieiiiieiiiiieeeeiieteeesie e e e s st e e s snteeee e s snteeeeesneeeeessnneessnnneeeeannneeeas 355
Offset: 0x18
PCI DevCSn[1] Base Address (High) ..o 355
Offset: 0x1C
PCI DevCSn[2] Base AdAress (LOW)......ccccciiiiiiiiiiiiii i 355
Offset: 0x20
PCI DevCSn[2] Base AAress (High)c.ooiiiiiiiiiiiiiii it 356
Offset: 0x24
PCI BOOtCS Base AAAreSss (LOW).......cc.oiuiiiuiiiiiiiiie it saa e 356
Offset: 0x18
PCI BootCSn Base Address (High)ccooiiiiiiiiii s 356
Offset: 0x1C
PCI P2P MemO0 Base AAAreSS (LOW)cuioiiiiiiiiiiie s 356
Offset: 0x10
PCI P2P MemO Base Address (High)..........oocuiiiiii s 356
Offset: 0x14
PCIP2P 1/O BASE AUAMESS. ...ccueeeiuieeittie ettt ettt sttt ettt e et e ste e be e e s et e e e bt e e sse e e abeeenbeeeanneesbeeennns 357
Offset: 0x20
PCI Internal Registers 1/0O Mapped Base AGUIESSuuveeiiciiieeeiiiiieessieee e s sieeee e snaeeeeesneene e s sneaeeannneees 357

Offset: 0x24

A.8 Serial-ATA Host Controller (SATAHC) REQISTEISuuiiiiiiiiiiiiiiiiiieeeee e 358

Table 323: SATAHC Configuration REGISIENcuiiiiiiiiiii i s 362
Offset: 0x80000

Table 324: SATAHC Request Queue Out-Pointer REJISLENcociiiiiiiiiii s 363
Offset: 0x80004

Table 325: SATAHC Response QUeUE IN-POINTEr REQISTENcuuuiieiiiiieeeciiie e eeie e e ste e s see e e s s e e e s snneeeeesneeeeeanns 363
Offset: 0x80008

Table 326: SATAHC Interrupt Coalescing Threshold REQISTENceiiiiiieiiiiie e eee e 364
Offset: 0x8000C

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 228

Document Classification: Proprietary Information April 29, 2008, Preliminary

List of Registers

Table 327: SATAHC Interrupt Time Threshold REGISTENcociiiiiiiiiiie s 364
Offset: 0x80010

Table 328: SATAHC INterrupt CauSE REGISIEN ...ttt e s 365
Offset: 0x80014

Table 329: RESEIVEA REGISTEciiiiiiiiii ittt e bt sttt et e e s e et e et b e e s b e e s abe e e sabeeaaes 366
Offset: 0x80018

Table 330: SATAHC Main Interrupt Cause REQISIENcoiiiiiiiiiiiii it 366
Offset: 0x80020

Table 331: SATAHC Main Interrupt Mask REQISTENccccoiiiiiiiiiiiiii s 367
Offset: 0x80024

Table 332: SATAHC LED Configuration REQISIEYcceiiiiiiiiiiiii s 367
Offset: 0x8002C

Table 333: WINAOWO CONIOI REGISTEI .. .ciiiuiiieeeiiiie e ettt e e stee e e e st e e st e e e s teee e e s esteeeeassnaeaaeasseaeeessaeaeeenssaneeesnsneneenas 368
Offset: 0x80030

Table 334: WINAOWO BASE REGISTETiieiiiiiieeiiieieeeeitiee e s sttt e e e stteeeeesttaeeeessstareeaansaeeaeasaaeaeessseaeeesseeaessnsaeeessnnseneeanns 368
Offset: 0x80034

Table 335: WINAOWL CONIOI REGISIETeiuiiiiiiiiiet ettt ettt eb et ettt eea et e e e bbe e ssbeeeneeesnbeeanes 369
Offset: 0x80040

Table 336: WINAOWL BASE REGISTETiieiiiiiieeiiieieeeiiiie e e e st e e e st e e e sttt e e e ssteeeeaannaeeeeasneeeeesstaeeeesseeaessnsaeeeeannneeeeanns 369
Offset: 0x80044

Table 337: WINAOW2 CONIOI REGISTEceiiiiiiieeieiiie ettt e st e e e sttt e e e e sn e e e e anneeeeeentteeeesaeeeesnteeeeesnrneeeennn 369
Offset: 0x80050

Table 338: WINUOW2 BASE REGISTETeieiiiiiieeiiiiieeeiiiiee e st e e e st ee e e e sttt e e e ssteee e e e naeeeeasneeaeeastaeeeesteeeessnsneeesanneeeeeanns 370
Offset: 0x80054

Table 339: WINAOW3 CONIrOl REGISIETcccuiiiiiiiiiiie ittt e s e sabe e 370
Offset: 0x80060

Table 340: WINAOW3 BASE REGISIEiiiiiiiiiieiiii ettt sttt e s et e s be e sn e e s sbaeeaaes 370
Offset: 0x80064

Table 341: EDMA Configuration REQISTETcuiiiiiiiiiiiiiie ittt e e sen e s b e siae e 371
Offset: Port 0: 0x82000, Port 1: 0x84000

Table 342: EDMA TiMer REGISIEN.......coiiiiiiiiiiii bbb s s a e saae i 374
Offset: Port 0: 0x82004, Port 1: 0x84004

Table 343: EDMA Interrupt Error Cause REGISIETcciiiiiiiiiiiiii s 374
Offset: Port 0: 0x82008, Port 1: 0x84008

Table 344: EDMA Interrupt Error Mask REQISIETcccciiiiiiiiiiiii s 377
Offset: Port 0: 0x8200C, Port 1: 0x8400C

Table 345: EDMA Request Queue Base Address High RegISter..........ccccocoiiiiiiiiiiiiiiiiii e 377
Offset: Port 0: 0x82010, Port 1: 0x84010

Table 346: EDMA Request QUEUE IN-POINtEr REGISTETuuiie e e st e et seree e e s stee e e s s e e e e snnaeessneeeeeanns 377
Offset: Port 0: 0x82014, Port 1: 0x84014

Table 347: EDMA Request Queue OUt-POINtEr REGISTENccciiiiiiee e eciiie e s e e see e et e e e e e e snnaeeeseneeeeans 378
Offset: Port 0: 0x82018, Port 1: 0x84018

Table 348: EDMA Response Queue Base Address High REQISIENceiiiiiiieeiiiiie e e e ee e eee e 378
Offset: Port 0: 0x8201C, Port 1: 0x8401C

Table 349: EDMA Response Queue IN-POINtEr REGISTENciiiiiueiieeiiiiiee et eiee e e e e s e e snee e eeeeeeens 378
Offset: Port 0: 0x82020, Port 1: 0x84020

Table 350: EDMA Response Queue OUt-POINTEr REQISLENccccuuiiiiiiiiiee et seee e e see e e eeeeeeee e 379
Offset: Port 0: 0x82024, Port 1: 0x84024

Table 351: EDMA COMMANT REQISTENeiueiiiieiiiiiee et e ettt e e et e e e st e e s tee e e e ante e e e enneeaeeenteeeeeansaeeenteeeeesnnneeeans 379
Offset: Port 0: 0x82028, Port 1: 0x84028

Table 352: EDMA TeSt CONIOI REGISIETiiiiiiiiiiiiiii ettt e et sb e s are e aiee 381

Offset: Port 0: 0x8202C, Port 1: 0x8402C

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C
April 29, 2008, Preliminary Document Classification: Proprietary Information Page 229

—

= 88F5182
M ARVELL® UserManual

Table 353:

Table 354:

Table 355:

Table 356:

Table 357:

Table 358:

Table 359:

Table 360:

Table 361:

Table 362:

Table 363:

Table 364:

Table 365:

Table 366:

Table 367:

Table 368:

Table 369:

Table 370:

Table 371:

Table 372:

Table 373:

Table 374:

Table 375:

Table 376:

Table 377:

Table 378:

EDMA STALUS REGISTE.....ccitiiiiiieiiie ettt b e e b et sbb e e sbe e e sbne e s s 381
Offset: Port 0: 0x82030, Port 1: 0x84030
EDMA IORdY TimMEOUL REGISIET.......eiiiiiiiiiie ittt s 382
Offset: Port 0: 0x82034, Port 1: 0x84034
EDMA Command Delay Threshold REGISIENc.cuiiiiiiiiiii i 382
Offset: Port 0: 0x82040, Port 1: 0x84040
EDMA Halt ConditionNS REJISLENccuuiiiiiiiiii i e 383
Offset: Port 0: 0x82060, Port 1: 0x84060
EDMA NCQO Done/TCQO Outstanding Status REJISLErccciiiiiiiiiiiiiie e 383
Offset: Port 0: 0x82094, Port 1: 0x84094
EDMA NCQ1 Done/TCQ1 Outstanding Status REGISLerccciiiiiiiiiiiiiie e 384
Offset: Port 0: 0x82098, Port 1: 0x84098
EDMA NCQ2 Done/TCQ2 Outstanding Status REGISIETuvveiiiiiieeiiieieeeeiiee e s e e seeee e seaee e e 384
Offset: Port 0: 0x8209C, Port 1: 0x8409C
EDMA NCQ3 Done/TCQ3 Outstanding Status REGISIENuvveiiiieieeiiieiee e eiiee e e s e e seeee e seeee e e nneee s 384
Offset: Port 0: 0x820A0, Port 1: 0x840A0
Basic DMA COMMANT REGISTENcceiiiieieeeiieiiieeesiieee s et e e seeeee e st e e e s sntaeaesssnteeeeeaseeeeesnsseesannneeeeannneees 384
Offset: Port 0: 0x82224, Port 1: 0x84224
BaSIC DIMA STAtUS REQISTETeiiiiiieee ittt et e et e e et e e sttt e e e s snte e e e e nne e e enaeeeeaanneeeeennnneeens 386
Offset: Port 0: 0x82228, Port 1: 0x84228
Descriptor Table Low Base AdAreSS REQISIENuviiiiiieieiiiiie et e e e e ee e e s 387
Offset: Port 0: 0x8222C, Port 1: 0x8422C
Descriptor Table High Base AdAreSs REJISIEc.uiiiiiiiiiieiiie ittt 387
Offset: Port 0: 0x82230, Port 1: 0x84230
Data Region LOW AAAreSS REGISTETcuiiiiiiiiiiiiiiie et 387
Offset: Port 0: 0x82234, Port 1: 0x84234
Data Region High AdAress REJISIEN...........cciuiiiiiiiiiie e 388
Offset: Port 0: 0x82238, Port 1: 0x84238
SSHAIUS REGISTE ...ttt st e e bt s bt st e e e s b bt e sbe e e be e e st bt e s er e e e b e e e sabeeaaes 388
Offset: Port 0: 0x82300, Port 1: 0x84300
SEITON REGISTENttt e b e b e b e s s e e s e e s sb e e sb e e e sab e e s ane e 389
Offset: Port 0: 0x82304, Port 1: 0x84304
SError Interrupt Mask REGISENcociiiiiii e 390
Offset: Port 0: 0x82340, Port 1: 0x84340
SCONLIOI REGISLEN ...t bbb bbb e s b e e sb b sab e e s b e e e saae e 390
Offset: Port 0: 0x82308, Port 1: 0x84308
LTMOOE REGISTEN ... e sb e s rb e s saae e 391
Offset: Port 0: 0x8230C, Port 1: 0x8430C
L /[0 To (=R B =T 11 T SRS 392
Offset: Port 0: 0x82310, Port 1: 0x84310
L /[0 To (= A =T £ T SRR 393
Offset: Port 0: 0x82314, Port 1: 0x84314
Lo o DAY/ To L= A LT 11 T SRR 393
Offset: Port 0: 0x8232C, Port 1: 0x8432C
L [0 To (= o L= 11 (T PR 394
Offset: Port 0: 0x82330, Port 1: 0x84330
2] RS I @0 T g1 (o] I =T o L] 1= SR 395
Offset: Port 0: 0x82334, Port 1: 0x84334
BIST-DWIL REQISIET ... etiieeiiiiite ettt s ettt e e e et e e ettt e e e et e e e e sna et eeeantteeeeeanteeeeeaneeesanseneesannneeeeannnneees 395
Offset: Port 0: 0x82338, Port 1: 0x84338
BIST-DW2 REISTETccutiiitiiiciiie ettt ettt ettt e s bt e e s bt e sbb e e ba e e s ne e e es 396

Offset: Port 0: 0x8233C, Port 1: 0x8433C

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 230

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 379: Serial-ATA Interface Configuration RegISterccccvevvvieiiiiiiinininiens

Offset: Port 0: 0x82050, Port 1: 0x84050

Table 380: Serial-ATA Interface Control REJIStercccccvvviiiiiiiiiiiiicciee e

Offset: Port 0: 0x82344, Port 1: 0x84344,

Table 381: Serial-ATA Interface Test Control RegiSterccccoovvviviieiiiiiiiicinies

Offset: Port 0: 0x82348, Port 1: 0x84348

Table 382: Serial-ATA Interface Status Register..........ccccocviiiiiiiiiiiiii e

Offset: Port 0: 0x8234C, Port 1: 0x8434C

Table 383: Vendor Unique ReQISLErccoiiiiiiiiiiiiii e

Offset: Port 0: 0x8235C, Port 1: 0x8435C

Table 384: FIS Configuration Registercccooviiiiiiiiiiiiii e

Offset: Port 0: 0x82360, Port 1: 0x84360

Table 385: FIS Interrupt Cause REQISIEr........ccvviiviieeiiiiieeesriee e e saeee e

Offset: Port 0: 0x82364, Port 1: 0x84364

Table 386: FIS Interrupt Mask REQISIEN..........vveiiiiieeiiiiiie e esiie e esieee e sneee e

Offset: Port 0: 0x82368, Port 1: 0x84368

Table 387: FIS DWO REQISIEI......cueiiiiiiiieeiiiiieeesiiie e s stee e e enneee e e e ssnveaeesnneeeessnneeeeeans

Offset: Port 0: 0x82370, Port 1: 0x84370

Table 388: FIS DWL REQISIEI......uueieiiiiiieeiiiiiee e siiee e s sttee e e eiee e e e eeeesneaeeeenneeeeeens

Offset: Port 0: 0x82374, Port 1: 0x84374

Table 389: FIS DW2 REQISIEI......cueieiiiiiieeiciiiiee e siiiee e stee e eiee e e e s e e e st e e s sneeeeeeas

Offset: Port 0: 0x82378, Port 1: 0x84378

Table 390: FIS DW3 REQISIEI......cueiiiiiiiieeiciiiieeesiiiee e s stee e e eee e e s e e e sneeeeessneeeeeans

Offset: Port 0: 0x8237C, Port 1: 0x8437C

Table 391: FIS DW4 REQISIENciiiiiiiiiiiiiieste et

Offset: Port 0: 0x82380, Port 1: 0x84380

Table 392: FIS DW5 REQISIENciiiiiiiiiiiiiieiiet et

Offset: Port 0: 0x82384, Port 1: 0x84384

Table 393: FIS DWB REQISIENciiiiiiiiiiiiiieciit it

Offset: Port 0: 0x82388, Port 1: 0x84388

A.9 Gigabit Ethernet Controller Registers.......cccccccciiiiiiiieeeevvevinnnns
Table 395: PHY AGUIESS .. .ueiieeiiiiie ettt see e e e ee e e snneeeeesnneeeeeans

Offset: 0x72000

Table 396: SMI ..ooiiiiiiiiie e

Offset: 0x72004

Table 397: Ethernet Unit Default Address (EUDA).........ccocvviiiieiiiieniiiee e

Offset: 0x72008

Table 398: Ethernet Unit Default ID (EUDID)cccooviiiiiiiiiiiiieiiie e

Offset: 0x7200C

Table 399: Ethernet Unit Reserved (EU)........cccocvoiiiiiiiiiiiieiiecee e

Offset: 0x72014

Table 400: Ethernet Unit Interrupt Cause (EUIC).........ccccocviiiiiiiiiiiiiiciie e

Offset: 0x72080

Table 401: Ethernet Unit Interrupt Mask (EUIM) ..o

Offset: 0x72084

Table 402: Ethernet Unit Error Address (EUEA) ...

Offset: 0x72094

Table 403: Ethernet Unit Internal Address Error (EUIAE)cooovvviveeviiieeeciiieeee

Offset: 0x72098

Table 404: Ethernet Unit Port Pads Calibration (EUPCR).........cccccccveeviiiieesiiiineennns

Offset: 0x720A0

Copyright © 2008 Marvell
April 29, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S103345-01 Rev. C
Page 231

—

= 88F5182
M ARVELL® UserManual

Table 405:

Table 406:

Table 407:

Table 408:

Table 409:

Table 410:

Table 411:

Table 412:

Table 413:

Table 414

Table 415:

Table 416:

Table 417:

Table 418:

Table 419:

Table 420:

Table 421:

Table 422:

Table 423:

Table 424:

Table 425:

Table 426:

Table 427:

Table 428:

Table 429:

Table 430:

Ethernet Unit Control (EUC)coouiiiiiiiiii et 415
Offset: 0x720B0

121 TSI Ao (o[(=T SO PPPRPPI 415
Offset: BAO 0x72200, BA1 0x72208, BA2 0x72210, BA3 0x72218, BA4 0x72220, BA5 0x72228

1P 2= (S) TP PSP PRSPPI 416
Offset: SRO 0x72204, SR1 0x7220C, SR2 0x72214, SR3 0x7221C, SR4 0x72224, SR5 0x7222C

High Address REmMAP (HA) ..o e 416
Offset: HARRO 0x72280, HARR1 0x72284, HARR2 0x72288, HARR3 0x7228C

Base Address Enable (BARE).........cooiiiiii i s 417
Offset: 0x72290

Ethernet Port ACCess ProteCt (EPAP)oocuii i 417
Offset: 0x72294

Port Configuration (GEC)ioiiiiiie ittt e st e e e e e st e e e e s neee e e s esee e e e s anseeeantaeeesnnnneeeennneees 418
Offset: 0x72400

Port Configuration EXtENA (GECX)c.uiiiiiiiiiieeiiiieeessieee s seieee e e siaee e e s sneaeeessnteeessnnseaeeesnaeeesnnnseeeesnnneees 419
Offset: 0x72404

MIT SEIIAI PAIAMEIEIS ettt a e e et et et e e ab e e e bt e e er e e sbb e e et e e e ann e e s beeenees 419
Offset: 0x72408

GMII SErIal PAIAMELETSeeitiiiee ettt ettt e et sh e s ket e skt e ean et e ar e e nb bt e sareeenreeanneeanee 420
Offset: 0x7240C

VLAN EtNerTYPE (EVLANE)otiiiteitieeet ettt ettt et nne e aees 420
Offset: 0x72410

MAC AAArESS LOW (MACAL) e ettt ettt s st e e et e e et e e e et e e e s st e e e e anneeeeennneeeannneeeeennnneeens 421
Offset: 0x72414

MAC AdAress High (MACAH) ...ttt st et e e et e e s bt e e s neeerbeeanbeeanneeeaneeas 421
Offset: 0x72418

SDMA Configuration (SDC)c.uviiirieiiiieiiii ittt et st e et e e sr e e sbe e seb e e e 421
Offset: 0x7241C

IP Differentiated Services CodePoint O to Priority (DSCPO)........ccccieiiiiiiiiiiiiiieiie e 423
Offset: 0x72420

IP Differentiated Services CodePoint 1 to Priority (DSCPL1)........ccccciiiiiiiiiiiiiiiiii e 423
Offset: 0x72424

IP Differentiated Services CodePoint 2 to Priority (DSCP2, DSCP3, DSCP4, DSCPS5)........ccccccvvviieninne 423
Offset: DSCP2 0x72428, DSCP3 0x7242C, DSCP4 0x72430, DSCP5 0x72434

IP Differentiated Services CodePoint 6 to Priority (DSCPB)..........ccccceciiiiiiiiiiiiiiiiicie e 423
Offset: 0x72438

Port Serial Control (PSC)ooiuiiiieii e s 424
Offset: 0x7243C

VLAN Priority Tag t0 Priority (VP T2P) ...uii e ceiiie et srr e e st e e st ee e e s e e e s snnaeaeeentesesnnnneaeesnneeees 427
Offset: 0x72440

ETNEINEt POIt STAUS (PS) ...vuiiieiiiiiie e ittt e ettt e e ettt e s ettt e e e sttt e e e s snt e e e s et e e e e e nnteeeeeasaeeastaeeesannneeeennnneeens 427
Offset: 0x72444

Transmit Queue ComMMAN (TQC) ...uuiiiiiiiieeeeiiie e et e e et e e e e e e e s st eeeessreeeeessrteeeesaasseeeeaaeeeesaneeneeanns 429
Offset: 0x72448

Maximum Transmit UNit (MTU) ..ot s e e st e e st e e e s sne e e e s ane e e s snneeeeannneeeas 429
Offset: 0x72458

Lo a1 a1 (=T (0T oL A O TU L= ([SRR 430
Offset: 0x72460

Port Interrupt Cause EXIENG (ICE).......uuiiiiiiiiiee i st ee e et e e e e st e e e e e e e e stee e e s nnnneaeennnneeees 431
Offset: 0x72464

POrt INEErrupt Mask (PIM)oiiie e 432

Offset: 0x72468

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 232

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 431:

Table 432:

Table 433:

Table 434:

Table 435:

Table 436:

Table 437:

Table 438:

Table 439:

Table 440:

Table 441:

Table 442:

Table 443:

Table 444:

List of Registers

Port Extend Interrupt Mask (PEIM)........coiiiiiiiiiiiiiiie e 433
Offset: 0x7246C
Port Rx FIFO Urgent Threshold (PRFEUT)ccuiiiiiiiiii ittt 433
Offset: 0x72470
Port Tx FIFO Urgent Threshold (PTRUT)ocviiiiiiii it s 433
Offset: 0x72474
Port Rx Minimal Frame Size (PMFS)c.cooiiiiii s 434
Offset: 0x7247C
Port Rx Discard Frame Counter (GEDFC)cccoiiiiiiiiiiiii s 434
Offset: 0x72484
Port Overrun Frame Counter (POFC)coiiiiiiiiiii i e s 434
Offset: 0x72488
Port Internal Address Error (EUIAE).........coi ittt s st e st e e s s e e e s snee e e s snnae e e e e nneeeesnnnneeeennnneees 434
Offset: 0x72494
Ethernet Current Receive Descriptor POINtErs (CRDP)ccocuiiie it e e 435

Offset: QO 0x7260C, Q1 0x7261C, Q2 0x7262C, Q3 0x7263C, Q4 0x7264C, Q5 0x7265C, Q6 0x7266C,
Q7 0x7267C

Receive Queue Command (RQQC)uiiiiiiiiiiiii it 435
Offset: 0x72680

Transmit Current Served DesCriptor POINTETcccoiiiiiiieiiii i 436
Offset: 0x72684

Transmit Current Queue Descriptor Pointer (TCQDP)coiiiiiiiiiiiie it 436
Offset: Q0 0x726C0

Transmit Queue Token-Bucket Counter (TQXTBC)cociiiiiiiiiiiiiii i 436

Offset: QO 0x72700, Q1 0x72710, Q2 0x72720, Q3 0x72730, Q4 0x72740, Q5 0x72750, Q6 0x72760,
Q7 0x72770

Transmit Queue Token Bucket Configuration (TQXTBC)cueiiiiuiieeiiiiieeeiiiiee e s eieeee s sneeeeessnnreae e nnenee e 436
Offset: QO 0x72704, Q1 0x72714, Q2 0x72724, Q3 0x72734, Q4 0x72744, Q5 0x72754, Q6 0x72764,
Q7 0x72774

Transmit Queue Arbiter Configuration (TQXAC).......cciiuieiiuiiiiiieiiie e e 437
Offset: QO 0x72708, Q1 0x72718, Q2 0x72728, Q3 0x72738, Q4 0x72748, Q5 0x72758, Q6 0x72768,
Q7 0x72778

Table 445: Destination Address Filter Special Multicast Table (DFSMT).....c..uuviiiiiiiee e eieeee e seeee e 437
Offset: 0x 73400-0x734FC

Table 446: Destination Address Filter Other Multicast Table (DFUT)coiiiiiiire i e e seeeee e 438
Offset: 0x73500-0x735FC

Table 447: Destination Address Filter Unicast Table (DFUT)cuuiiiiiiiiieciciiie e eeee e s e e e e e e sneeeeaanes 439
Offset: 0x73600-0x7360C

Table 448: MAC MIB COUNTEIS.ciiiiieiitieiit ettt e et ste e bt e ettt e aae e e et et e abeeeass e e eabeeeaabeeaabe e e ket e ab bt e ebeeabeeenbseesnbeeannneennne 441
Offset: 0x73000-0x7307C

A LOUSB 2.0 REOISTEIS .oiiiiiiiiittiee ettt e e e et e e e e e s e et e e e e e s e sbbreeeeeeaeas 443

Table 452: USB 2.0 Bridge Control REQISIETc.ciiiiiiiiiiiiii e 445
Offset: Port0: 0x50300, Portl: 0OxA0300

Table 453: USB 2.0 Bridge INterrupt CauSE REGISIEN......cccciuiiieeiiiiiieeeciieie ettt e e sstte e e e stee e e s tteeeessnneeeeesseeeessneeeeaanns 445
Offset: Port0: 0x50310

Table 454: USB 2.0 Bridge INterrupt Mask REQISTENccciiuiiiiiiiiiee e eree e see e see e e e enaaee e s snnee e e anteeeessnneeeenns 446
Offset: Port0: 0x50314, Portl: 0xA0314

Table 455: USB 2.0 Bridge Error AAAresSs REQISTETueiiiiiiieieiiiiee e ciiiee e erieee e s siiee e e eeaaeaeesntaaeeesnsaeeesseeeeessnsnneeenns 446
Offset: Port0: 0x5031C, Portl: 0xA031C

Table 456: USB 2.0 WIiNndowWO CONLrOl REGISTETc.ciiuiiieeiiiiiie e eiiiee e st see e e siee e e e sieee e e s et eeesnnneeeeennaeeeesnneeeeeanns 446
Offset: Port0: 0x50320, Portl: 0xA0320

Copyright © 2008 Marvell Doc. No. MV-S103345-01 Rev. C

April 29, 2008, Preliminary Document Classification: Proprietary Information Page 233

—

= 88F5182
M ARVELL® UserManual

Table 457:

Table 458:

Table 459:

Table 460:

Table 461:

Table 462:

Table 463:

Table 464:

USB 2.0 WIiNdOW0 Base REGISIENciiiiiiiiiiiiiiiiiee et 447
Offset: Port0: 0x50324, Portl: 0OxA0324
USB 2.0 WINdow1 CoNtrol REGISTETcccuuiiiiiiiiiieiiii ittt 447
Offset: Port0: 0x50330, Portl: 0OxA0330
USB 2.0 WINdOW1 BaS@ REGISIENueiiiiiiiiiiiiii et 447
Offset: Port0: 0x50334, Portl: 0OxA0334
USB 2.0 WIindow2 Control REQISIEToiiiiiiiiiiiii i s s 448
Offset: Port0: 0x50340, Portl: 0OxA0340
USB 2.0 WIiNdow2 Base REGISIENcoiiiiiiiiiiii i s 448
Offset: Port0: 0x50344, Portl: 0xA0344
USB 2.0 WIindow3 Control REQISIETciiiiiiiiiiiii i s 448
Offset: Port0: 0x50350, Portl: 0OxA0350
USB 2.0 WINAOW3 BASE REQISIET ...ceiiiuiiiiiiieiiie e iiee st te st e e ettt e e e s tae e e s st eeesnnsaeeeesnneeesanneeeeannneees 449
Offset: Port0: 0x50354, Portl: 0OxA0354
USB 2.0 POWET CONIOI REQISTENeiiieiiiieeieiiiie e e sttt e st a e s et e e et e e e st e e e e snnae e e e eneeeesnnnneeeennnneees 449

Offset: Port0: 0x50400, Port1: 0xA0400

A.11Cryptographic Engine and Security Accelerator RegiStersccccccevviiiiiiieeeeennnnnns 451

Table 466:

Table 467:

Table 468:

Table 469:

Table 470:

Table 471:

Table 472:

Table 473:

Table 474:

Table 475:

Table 476:

Table 477:

Table 478:

Table 479:

Table 480:

Table 481:

Table 482:

DES Data Out Low Register
Offset: 0x9DD78

DES Data Out HiIgh REJISLENoiiiiiiiiic i s 453
Offset: 0x9DD7C
DES Data BUffer LOW REQISTETcoviiiiiiiie i et s st e e st e et e e e s eee e e s st e e e s aeeenseeeesnnnneeeennnneees 453
Offset: 0x9DD70
DES Data BUffer High REGISTETcciiiiiiee ettt et e s et e e e s eeesrae e e s snneeeeannneees 453
Offset: 0x9DD74
DES Initial Valug LOW REQISTEN.......uiiiiiciiiieeeeiiiee e ettt e s eeee e e e steae e st ee e e s nseaeeesannseeeessseesannseeeeennnseeeennnses 453
Offset: 0x9DD40
DES Initial Value High REGISTETceiiiiiiiie ettt e e e e st e e s eesntae e e s snneeeeannneeeas 453
Offset: 0x9DD44
DES KEYO LOW REGISTE ... tieieeiiiieee it e ettt e st e e s st e e et e e e s et e e e s snaee e e e anneeeeanaeeeeaanneeeeennnneeens 454
Offset: 0x9DD48
DES KeYO High REQISLENeeiieiieieeee ettt ettt e e e st e e s st e e s sttt e e e a e eesentae e e s snneeeeennnneeas 454
Offset: 0x9DD4C
DES KEYL LOW REGISIEN ...ttt e ettt s 454
Offset: 0x9DD50
DES KeY1 High REGISIENviiiiiiiiiiii ittt ettt 454
Offset: 0x9DD54
DES KEY2 LOW REGISIEN ...ttt ettt 454
Offset: 0x9DD60
DES KeY2 High REQISIENviiiiiiiiiiii ittt 455
Offset: 0x9DD64
DES Command REGISIENcocuiiiiiiiiiii s 455
Offset: 0x9DD58
SHA-1/MD5 Data IN REJISLENccuiiiiiiiiiiii i e s 456
Offset: 0x9DD38
SHA-1/MDS5 Bit Count LOW REGISTEN........cociiiiiiiiiiii s 456
Offset: 0x9DD20
SHA-1/MD5 Bit CouNt HIGh REQISIETviieeiiiie ettt e s e e s s e e e st ee e e s raaaeesnneaeeennees 456
Offset: 0x9DD24
SHA-1/MD5 Initial Value/Digest A REQISIENcciiiiiieeeiiiireeeeiee e sieee e ssre e s e e e e saee e e e sneaeseneaeeeesnneees 456

Offset: 0x9DDO00

Doc. No. MV-S103345-01 Rev. C Copyright © 2008 Marvell

Page 234

Document Classification: Proprietary Information April 29, 2008, Preliminary

Table 483: SHA-1/MD5 Initial Value/Digest B ReQISter..........ccccovvviiviiiiiiiiiiiieiies

Offset: 0x9DD04

Table 484: SHA-1/MD5 Initial Value/Digest C Register..........ccccouvvviviiiiiiiiiiieiiies

Offset: 0x9DDO08

Table 485: SHA-1/MD5 Initial Value/Digest D Register..........ccccoovviviiiiiiiiiiicinies

Offset: 0x9DDOC

Table 486: SHA-1 Initial Value/Digest E RegiSterccceiiiiiiiiiiiiiciiiiie e

Offset: 0x9DD10

Table 487: SHA-1/MD5 Authentication Command Register.............cccoeceiiieiniins

Offset: 0x9DD18

Table 488: AES Encryption Data In/Out Column 3 RegiStercccccvviieeeiiiiiineens

Offset: 0x9DDAO

Table 489: AES Encryption Data In/Out Column 2 RegiSterccccevvvvveeeiiiieneenns

Offset: 0x9DDA4

Table 490: AES Encryption Data In/Out Column 1 RegiStercccccevvvvveeeiiinineenns

Offset: 0x9DDAS8

Table 491: AES Encryption Data In/Out Column 0 RegiSterccccevvvvveeeiiineneenns

Offset: 0x9DDAC

Table 492: AES Encryption Key Column 3 ReQIStercccovvviveiriiiieeniiiieeeeiieee e

Offset: 0x9DD90

Table 493: AES Encryption Key Column 2 ReQISterc.coccviveiriiiieeeiiieee e

Offset: 0x9DD94

Table 494: AES Encryption Key Column 1 RegISterc.ccvciveeriiiieeeiiiiee e

Offset: 0x9DD98

Table 495: AES Encryption Key Column 0 ReQIStErcccvviiiiiiiiiiriiieeniie i

Offset: 0x9DD9C

Table 496: AES Encryption Key Column 7 ReQIStErcccvvviiiiieiiiiiiieeneee e

Offset: 0x9DD80

Table 497: AES Encryption Key Column 6 ReQISterccccocviiviieiiiiiiiieriie i

Offset: 0x9DD84

Table 498: AES Encryption Key Column 5 RegiStercccoeiviiiiiiniiiiiiiie e

Offset: 0x9DD88

Table 499: AES Encryption Key Column 4 RegiSterccccocoiiviiiiiiniiiiiiieecie

Offset: 0x9DD8C

Table 500: AES Encryption Command RegiSterccceiviiiviiiiiiiieniiiee e

Offset: 0x9DDBO

Table 501: AES Decryption Data In/Out Column 3 RegiSter...........cccvvvveeiiniiieeenns

Offset: 0x9DDEO

Table 502: AES Decryption Data In/Out Column 2 RegISter........cc.vvevviiveeeiiiieneanns

Offset: 0x9DDE4

Table 503: AES Decryption Data In/Out Column 1 RegiSter........ccccvevvvvveeeiiiieneennns

Offset: 0x9DDES8

Table 504: AES Decryption Data In/Out Column 0 RegiSter........cccvevvvivveeeiiiveneannns

Offset: 0x9DDEC

Table 505: AES Decryption Key Column 3 REGISLENcceivivieeiiiiiieeeiiiieeeeiieee e

Offset: 0x9DDDO

Table 506: AES Decryption Key Column 2 REGISLENcccvvivvieeeiiiiieeeiiiieeeeiieee e

Offset: 0x9DDD4

Table 507: AES Decryption Key Column 1 REGISLENceeiviviieeeriiiieeeiiiieeeeiieee e

Offset: 0x9DDD8

Table 508: AES Decryption Key Column 0 Registerccccovviviiiiiiiiiiinniie e

Offset: 0x9DDDC

Copyright © 2008 Marvell
April 29, 2008, Preliminary Document Classification: Proprietary Information

List of Registers

Doc. No. MV-S103345-01 Rev. C
Page 235

—

= 88F5182
M ARVELL® UserManual

Table 509:

Table 510:

Table 511:

Table 512:

Table 513:

Table 514:

Table 515:

Table 516:

Table 517:

Table 518:

Table 519:

Table 520:

Table 522:

Table 523:

Table 524

Table 525:

Table 526:

Table 527:

AES Decryption Key COIUMN 7 REJISTETcuuiiiiiiiiiie ittt 464
Offset: 0x9DDCO
AES Decryption Key COIUMN 6 REJISTETcoiiiiiiiiiiiiie ettt 464
Offset: 0x9DDC4
AES Decryption Key COlUMN 5 REJISIENc.eiiiiiiiiiii ittt 464
Offset: 0x9DDC8
AES Decryption Key Column 4 REJISLENcoiiiiiiiiiiiii i 464
Offset: 0x9DDCC
AES Decryption Command REJISIEYccciiiiiiiiii i s 465
Offset: 0x9DDFO
Security Accelerator Command REJISIENoiiiiiiiiiiiiii s 465
Offset: 0x9DEOO
Security Accelerator Descriptor Pointer Session 0 REQISIETccoviuviieeiiiiire e see e 466
Offset: 0x9DE04
Security Accelerator Descriptor Pointer Session 1 REQI